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PERIPHERAL NEURAL REPRESENTATION OF THE. SHAPE OF A STEP STROKED
ACROSS THE MONKEY'S FINGERPAD. R.H. laMotte and M.A. Srinivasan®
Dept. of Anesthesiology, Yale Univ. Sch. Med., New flaven, CT 06510

In the present study, we investigated the peripheral-neural
representation of small shapes stroked across the finger. FEach
shape was a step change in height of a plate. The cross-

" sectional shape of the step from low to high approximated that of

. to 40mm/s.
+ side of the step,

a half-cycle of a sinusoid. Step height was maintained at 0.5mm,
while the half-cycle wavelength was varied from 0.45mm (steep) to
3.Tmn {gradual). A servocontrolled mechanical stimulator stroked
the step back and forth over the glabrous skin of the fingertip
while maintaining contact force at 20g wt. Stroke distance along
the mediolateral axis was 18uwn and stroke velocity varied from 1
Each step was stroked first from the high to the Tow
i.e. step-stroking off the skin (SS-off) and
then fack again from low to high (step stroking onto the skin,
SS-on).

Evoked action potentials
afferent fibers
monkey (M.
dissection

in single primary mechanoreceptive
fnnervating the fingerpad of the anesthetized
fascicularis) were recorded by the methods of fiber
and single wunit recording. Ten rapidly adapting

‘fibers (RA) (Meissner type) and eight slowly adapting fibers (SA)

(type 1) were studied. FEach fiber's responses to a step stroked
in one direction provided a spatial response profile in which the
occurrence of each action potential corresponded to a position of

the step on the skin. The SAs, but not RAs, exhibited a base
discharge that was interrupted by a sequence of
"pause-burst-pause" for SS-on and "burst-pause" for SS-off. RAs

exhibited a single burst to a step moved in either direction.
Both SAs and RAs had a greater burst frequency for the SS-on than

- SS-off.

: by changes in step-shape and stroke velocity.

|
i
!

‘
{

i

" across the skin.

' response feature that remained more or
i range of stroke velocities was the spatial width of the burst in

The spatial response profile of SAs and RAs were also altered
For both SAs and

i RAs, discharge rate during the burst increased with incredses in
© stroke

velocity and with of the

less

steepness step. The only

invariant over a

SAs which, for SS-on, decreased as step shape became steeper.

These results were interpreted as showing a close

i relationship between the spatial response profile and the profile

of skin deformation expected to occur when a step.was stroked
The base discharge of SAs and their greater
sensitivity to changes 1in skin curvature distinguished the
response profiles of SAs from those of RAs.
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RESPONSES ~OF _ CUTANEOUS RECEPTORS TO SMOOTH AND FINELY EMBOSSED
'‘SURFACES STROKED ACROSS THE PRIMATE FINGERPAD, R.H. LaMot’ge,
J.M. Whitehouse*, M.A. Srinivasan*. Dept. of Anesth., YaTelUn1v.
FEh. of Med., New Haven, CT 06510

} Three types of surfaces were stroked at a velocity of 10 mm/s
under constant compressional force back and forth across the
fingerpad of humans and anesthetized monkeys: 1) a smooth glass
plate; 2) a smooth glass plate containing a single dot 550 um
diameter, the height of which was varied from .75 to 80 um; 3) ai

glass plate textured with a distributlon of uniformly spaced dotis,
each 50 um diameter and of the same height - varied from .01 to b
um. Responses were recorded electrophysiologically from single,
'stowly adapting (SA), rapidly adapting Meissner corpuscile {RA),
'andd Pacinian corpuscla (PC) mechanoreceptive fibers innervating
the fingerpad of the anesthetized monkey. 1) Smooth plate. Human
observers were able to identify differences in the direction of
lateral stretch but had difficulty in detecting the presence or
absence of steady movement. Monkey SAs, RAs, and PCs responded to
ﬁnitial skin stretch during onset of lateral movement, but only
SAs continued to respond steadily. About half of the SAs
exhibited directional sensitivity: their steady discharge rate
Mas significantly greater for movements in one or the other
direction even when the degree of lateral stretch was the same in
both directions; 2) Plate with dot. The minimal height of a
'single dot detected by humans was between 1 and 3 um for a stroke
velocity of 10 mm/s. Similar dot height thresholds were found for
monkey RAs (2-4 um) but were higher for SAs {>8 um) and PCs (>2]
um). The Tlikely mechanical events activating RAs at threshold
were local 1lateral deformations of the papillary ridges by the
leading edge of the dot. 3) Textured plate. All PCs responded
readily to Tlaterally moving textures of 1 um height and 100 um
spacing which did not activate the RAs - some PCs to textures with
dot heights as low as 0.3 um., Variations in the density of dots
produced different amounts of lateral skin stretch to which some
of the SAs responded. Humans had no difficulty in perceiving the
lateral movement of plates with detectable single dots or textures.
Conclusion. The direction of movement of a smooth or finely
textured plate stroked across the skin is encoded by activity in
directionally sensitive SAs. The perception of the relative
motion between the platé and the finger requires the existence of
detectable surface features. If the feature is a single raised
dot whose height is 4 um and diameter 550 um, its presence and its
motion during lateral stroking are encoded only by the RAs. If
the feature is a fine texture consisting of a pattern of dots,
each of 1 um height, then only PCs can encode the presence and
motion of the texture during lateral stroking.
} (Supported by NIH Grant 15888)
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TACTILE DISCRIMINATION OF SOFTNESS. M.A. Srinivasan*, J.M.
Whitehouse*, and R.H. LaMotte (SPON:J.G. Collins) Dept. of
Anesthesiology, Yale University Sch. of Med., New Haven, CT 06510.

A measure of the softness of an object is the ratio of the depth
of indentation of the object to the force causing the indentation.
During active touch, information about both the force and
indentation depth of the object is available to the subject through

sensory receptors in skin, joint and muscle. 1In contrast, when an
object 1is applied to the passive skin surface, the subject can
assess the force from the cutaneous receptor response, but the
depth of indentation of the object is unknown. In order to

determine the importance of non-cutaneous cues in judging softness,
we investigated the capacity of humans to discriminate softness
under both active and passive touch.

Twelve transparent cylindrical disks {35mm dia. x 10mm thick)
nade of silicone rubber of varying softness (controlled by varying
the amount of a diluent) were cast. Objective measures of softness,
or compliance, were determined by measuring the average slopes of
force versus displacement traces obtained by constant velocity
indentations with a rigid, flat probe (6émm diameter). -

When human subjects actively indented each specimen with the
fingerpad, their subjective ranking of softness was the same as the
ordering based on the objective measure of conmpliance. Five
specimens (2.8, 4.1, 5.7, 9.2, and 10.2 nm/gnm), 100% discriminable
with active touch, were chosen for passive touch discrimination. In
pairwise discrimination tasks, each specimen of the pair was
brought onto the subject's stationary fingerpad at a constant
velocity, maintained steady for 1 s and then withdrawn. The subject

stated which one of the 'pair was softer. Subjects could
discriminate only the specimens 2.8 and 10.2 from the 5.7um/gn
specimen at levels greater than 75% correct. In separate tests,
when one member of each pair was applied at a slower or faster

velocity than the other, threshold discriminations of softness were
not possible even between specimens of 2.8 and 5.7 um/gm
compliance. Thus human discrimination of softness was significantly
better under active than  passive conditions. Passive
discrimination deteriorated when indentation velocity was varied.
In order to determine the relevant cutaneous cues for
discrimination, contact areas between the passive fingerpad and the

specimens were videotaped. Off-line analyses indicated that the
variation in contact area versus time for the specimens was quite
small, but the corresponding traces of total force ({and thus
pressure) versus time were distinct from each other. Thus active
softness discrimination may be based on the combined responses of
mechanoreceptors in skin (encoding the rate of change of pressure)
and joint or muscle (providing the velocity of indentation of the

object). The absence of the proprioceptive information leads to a
considerable A@eteriorqtiopAgf‘Qiscpiminabiliﬁy.(PHS grant 15888).
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Abstract submitted to the XXXI International Congress of Physiological
Sciences, July 9 - 14, 1989, Helsinkil, Finland.

DISCRIMINATION OF SOFTNESS BY ACTIVE AND PASSIVE TOUCH
M.A. Srinivasan, J.M. Whitehouse and R.H. LaMotte
Dept. of Anesthesiology, Yale University Sch. of Med.,
New Haven, Connecticut 06510, USA.

We investigated the relative importance of cutaneous
and proprioceptive information in the discrimination of

softness. The stimuli consisted of 12 visually
identical, transparent cylindrical disks made of
silicone rubber of varying softness. The compliance of

each specimen was measured as the average slope of the
displacement vs. force trace, obtained by constant
velocity indentations with a rigid, flat probe.

When human observers actively indented each of the
12 specimens with the fingerpad, their subjective
rankings of softness were the same as the ordering
based on the objective measures of compliance. 1In
pairwise discriminations among 5 specimens using active
touch, subjects discriminated nearly perfectly between
a standard compliance of 5.7 um/g wt and comparisons of
2.8, 4.1, 9.2, and 10.2 um/g wt. In passive
discrimination tests, the same stimulus pairs were
indented into the stationary fingerpad by a
servo-controlled tactile stimulator, to a peak force of
100g wt. When each specimen of a pair was brought down
at the same velocity of 3 mm/s (the average velocity
used by the subjects in active touch), the subjects
discriminated only the compliances of 2.8 and 10.2 from
the standard. Discriminability deteriorated further
when one specimen was applied at a higher or lower
velocity than the other (3 mm/s #+ 20%). Under these
conditions, none of the compliance pairs was
discriminated. Thus, human discrimination of softness
was significantly better under active than passive
conditions.

The same 5 stimuli were presented to the stationary
fingerpad of the anesthetized monkey, while recording
evoked responses in single slowly adapting
mechanoreceptive peripheral nerve fibers. During each
indentation, the force and contact area were measured
as functions of time. Traces of average pressure vs.
time and discharge rate vs time depended on both the
compliance and the velocity of indentation in a manner
consistent with the psychophysical results.

A theory of softness discrimination was developed.
It indicated that active discrimination of softness
is based on the combined responses of mechanoreceptors
in the skin (encoding the rate of change of pressure)
and joint, muscle or “efferent copy' (providing the
velocity of indentation of the object). During passive
discrimination, the absence of proprioceptive
information leads to a considerable deterioration of
discriminability, since the subject cannot separate
the effects of the compliance and the indentation
velocity of the object on the rate of change of
surface pressures, and consequently on the responses
of cutaneous receptors.

(PHS grant 15888 and ONR contract N0014-88-K-0604)
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REPRESENTATION OF SHAPE IN THE RESPONSES OF CUTANEQUS
MECHANORECEPTIVE AFFERENT FIBERS. M.A. Srinivasan* and B.H.
LaMotte (SPON: S. E. Kapadia). Research Lab. of Electronics, MIT,
Cambridge, MA 02139 and Dept. Anesthesiology, Yale Univ. Sch. Med.,
New Haven, CT 06510.

The distribution of surface curvature of an object defines its shape. In order
to investigate the peripheral neural representation of shape, we recorded
responses of slowly and rapidly adapting mechanoreceptive afferent fibers
(SAs and RAs ) to cylinders differing in curvature, and to a pattern of
curvatures forming a smooth wavy surface applied to the monkey fingerpad.
The discharge rates of both SAs and RAs to indentations by the cylinders
increased with curvature. SA responses discriminated the curvatures very
well both during the ramp and steady phases, in comparison to the ramp
responses of RAs. RA responses were well modulated by the curvatures
when the cylinders were sinusoidally vibrated: Their response thresholds
decreased with increases in curvature. When the wavy surface was stroked
at constant force over the fingerpad, both SAs and RAs responded with
bursts to the convex portions and pauses to the concave. The width and
frequency of SA responses were correlated with the wavelength and radius
of the skin curvature, respectively. The RAs responded only to the leading
half of the convex portions with poorer modulation. These findings are
consistent with our earlier hypotheses [J. Neurosci. 7(6) 1655-1695]; SA
discharge rates increase with increases in the depth of indentation and
curvature change at the receptive field, and SAs do not respond to the
unioading of curvature; RA discharge rates increase with increases in the
velocity of indentation and rate of curvature change at the receptive field.
(PHS grant NS 15888 and ONR contract N00014-88-K-0604)
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CUTANEOUS AND PROPRIOCEPTIVE CONTRIBUTIONS TO TACTUAL
DISCRIMINATION OF SOFTNESS._R.H. LaMotte and M. A. Srinivasan®
Dept. of Anesthesiology, Yale Univ. Sch. of Med., New Haven, CT. 06510
and Research Lab. of Electronics, MIT, Cambridge, Ma 02138.

The capacities of humans to discriminate between objects that varied in
softness were measured under conditions that differed as to the relative
contributions of cutaneous and proprioceptive cues available to the subject.
A series of disks that differed in compliance (slope of displacement vs. force
trace obtained by vertical indentations of each disk with a rigid probe) were
cast using silicone rubber. Subjects made two-interval forced-choice
discriminations using the distal pad of the middle finger. When the maximal
force of indentation allowed was low (80g), optimal discrimination was
achieved under active touch, wherein both proprioceptive and cutaneous
information was available. Under passive touch, when only cutaneous cues
were present, discrimination was much poorer and was confounded by
alterations in indentation velocity. When the maximal force of indentation
was higher (160g) under active touch, and cutaneous cues were eliminated
by a local anesthetic, discrimination based on proprioceptive signals alone
was not possible. However, without the anesthetic, optimal dicriminination
was possible under passive conditions based on cutaneous information
alone, in spite of variations in indentation velocity. Reponses of slowly
adapting mechanoreceptive afferent fibers innervating the monkey
fingerpad discriminated better the differences in the compliance of the
rubber disks at higher forces of indentation. At lower forces, differences in
responses to compliances were confounded by variations in the velocity of
indentation in accordance with the corresponding psychophysical results.
{PHS grant NS15888 and ONR contract N00014-88-K-0604).
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Common carotid volume {low was measured by means of a novel cw Doppler flow-
meter (1) in 38 patients having a unilateral and 4 patients having a bilateral EC/IC
bypass.

PLEASE TYPE

wne Lelpest L aMote

wss_ V0t ST Prnesthies (ol 29y, Yode Dol Wed . SAL. 333 Cedoi St
City N W H&.U‘e&'\ 7Slate d, Postal Code 06510 )

County AN lis Avea CodeDaytime Telephone b0 3 = F& —~ S (Y |

ABSTRACT FORM

Type single-spaced within lines

SOFTNESS DISCRIMINATION
R. 11. LaMotte and M. A. Srinivasan
Dcepartment of Anesthesiology, Yale University School of Medicine, New
Haven, CT and Research Lab. of Electronics, M.I.T., Cambridge, MA.
Human subjects could easily discriminate, with pairwise comparisons, the
softnees of rubber disks that differed in compliance by actively pressing each
dish wih the I'mgerpad. Discrimination was poorer when disks were passively
indented into the restrained fingerpad at a constant velocity and peak force
equal to mean values observed during acfive touch. Discrimination was even
poorer when the velocities were different for the two indentations of a pair
of compliances. Discrimination improved under both active and passive
conditions as the peak force of indentation was increased. When the peak
force was maximal at 160g, under active touch, and cutaneous cues were
eliminated by a local anesthetic, discrimination based on proprioceptive
information alone was not possible. Responses of slowly adapting mechanor-
eceptive afferent fibers innervating the monkey fingerpad discriminated
better the differences in compliance at higher forces of indentation.
Differences in responses to compliance were confounded by variations in
indentation velocity as observed in the psychophysical studies. We conclude
that both proprioceptive and cutaneous cues contribute to softness
discrimination.

Do not fold this form. Use cardboard backing when mailing.
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TACTILE DISCRIMINATION AND REPRESENTATIONS OF TEXTURE,
SHAPE, AND SOFTNESS

M. A. Srinivasan
Research Lab of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

R. H. LaMotte
Department of Anesthesiology
Yale University School of Medicine
New Haven, Connecticut

We present here some of the salient results on the tactual discriminabilities of human subjects
obtained through psychophysical experiments, and the associated peripheral neural codes obtained
? through electrophysiological recordings from monkey single nerve fibers. Humans can detect the
presence of a 2 microns high single dot on a smooth glass plate stroked on the skin, based on the
responses of Meissner type rapidly adapting fibers (RAs). They can also detect a 0.06 microns high
grating on the plate, owing to the response of Pacinian corpuscle fibers. Among all the possible rep-
resentations of the shapes of objects, the surface curvature distribution seems to be the most relevant
for tactile sensing. Slowly adapting fibers respond to both the change and rate of change of curvature
of the skin surface at the most sensitive spot in their receptive fields, whereas RAs respond only to
the rate of change of curvature. Human discriminability of compliance of objects depends on
{4  whether the object has a deformable or rigid surface. When the surface is deformable, the spatial
pressure distribution within the contact region is dependent on object compliance, and hence infor-
mation from cutaneous mechanoreceptors is sufficient for discrimination of subtle differences in
compliance. When the surface is rigid, kinesthetic information is necessary for discrimination, and
the discriminability is much poorer than that for objects with deformable surfaces.
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COMPUTATIONS IN TACTILE SENSING

M_.A. Srinivasan
Research Lab of Electronics, MIT
Cambridge, MA 02139

Abstract

Our tactile sensation is the culmination of a series of evenls: Physical contact with an object
causes mechanical loading on the skin surface and results in distortions of mechanoreceptors; the
receptors, in turn, respond with electrical impulse trains that are subsequently processed by the
nervous system. In this paper, we present detection of slip, microtexture, shape, and compliance
as examples of computations in tactile sensing. We draw upon results from our experiments on the
biomechanics, neurophysiology, and psychophysics of tactile sense, as well as theoretical analyses
employing the mechanics of deformable media.
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Sunmunary

We constantly grasp, press, squeeze, or stroke objects with our fingerpads. We use physical
contact with objects to explore their geomeltrical properties such as surface texture and shape, as
well as material properties such as compliance. While manipulating the ob jects, say, mmoving them
from one location to another using a pinch grasp, contact conditions give us informalion about
the weight of the object, whether the ubjecl is slipping, and if so, whether the control action of
increased grasp force has terminated the slip. Yel, we know very little about the nature of the
contact between the fingerpad and various objects that differ in their physical properties, the kind
of spatio-temporal contact information gathered by our tactile sensors, or as to how it is processed
by the central nervous system and is used in controlling the contact conditions with the help of
the motor system. Although psychologists have measured human tactual discriminabilities under
various conditions, and neurophysiologisis have characterized mechanoreceptor responses, very little
attention bas been paid to the computational aspects of the sense of touch. We present here some
of the resulls of our investigations on computations in tactile sensing supported by psychophysical,
neurophysiological, and biomechanical experiments on primates, together with theoretical analyses
based on the mechanics of deformable media. It should be noted that the computational aspects of
these results are relevant to robot tactile sensing as well because of the similarities hetween human
and robotic tactual sensory systems.

Tactual information comsists of two components: (1) contact information which specifies the
nature of direct contact with the object; (2) kinesthetic information which refers to the position
and motion of the linbs. In this paper, we shall mostly be concerned with contact information,
which in primates is mediated by four types of peripheral afferent fibers. Two of these are slowly
adapting fibers (SA I and II) that are associated with Merkel cells and Ruffini endings, and are
responsive both when an object in contact is moving against the skin as well as steadily indenting
it. The other two types are rapidly adapting fibers which respond only when the skin is moving,
one type (RAs) terminating in Meissner corpuscles, and the other (PCs) in Pacinian corpuscles.
When a probe indenting the skin is vibrated, lowest response threshold amplitudes for SAs are at
frequencies of 0-10 Hz, for RAs at 20-50 1z, and for ’Cs at 100-300 liz. We summarize below our
viewpoint, our approach, as well as some of {he results we have obtained on the neural computations
involved in the detection of slip, microtexture, shape, and compliance.

From an information processing point of view, tactile sensing of ob jects can be seen as the flow
of information from the object surface to the brain. The path of this flow cousists of several stages,

*Oral presentation. Category: C. Experimental. Theme: E. Sensory Systems (1) Somatosensory



with a different representation of the information at each stage. Some of the stages relevant to our
purpose here are the geometry and material properties of the object itself, the mode of contact
and mechanical loading on the skin surface, stress and strain fields within the skin (especially
at the receptor locations), spatio-temporal patterns of action potentials in afferent fibers, and
further transformations within the nervous system. At each of these stages, the representation of
ob ject properties can be achieved by several candidates. The problem of understanding how these
properties are detected through touch requires an investigation of what representations are actually
used by the somatosensory system at each stage of the information flow.

Although humans use a large set of descriptive terms to distinguish a variely of tactual percep-
tions, they are really combinations of a few ‘building blocks’ or ‘primnitives’. For situplicity, normal
indentation, lateral skin streich, relative tangential motion, and vibration are the primitives for
the conditions of contact with the object; surface micro-texture, shape (mm-size), and compliance
could be thought of as the primitlives for the iajority of object properties perceived by touchl.
It is plausible that by understanding the peripheral and central processing involved in each pair-
wise combination of the primitives for object properties and contact conditions, we will be able to
understand the processing of stimuli which are more general combinations.

(A) Detection of Slip

Slip, or tangential relative motion between skin surface and the object surface is essential
to detect microtextures on surfaces, and generally improves tactile perceplion even for mm size
features. In order for the central nervous system to extract the object features from the spatially
and temporally varying tactile ‘image’, the existence and direction of relative motion must first be
detected. We have shown that hwnans canuot detect the slip of a smooth glass plate on the skin,
and that existence of detectable features on the surface is necessary for slip detection. However,
surprisingly small features (for example, 4pum high dot causes RAs to respond and lum high
dot texture causes PCs to respond) on smooth surfaces are detected by humans and lead to the
detection of slip of these surfaces, with the geometry of the microfeatures governing the associated
neural codes. The division of labor among the different types of fiber populations in signalling
the different events on the skin is clear-cut: SAs signal the direction of skin stretch and hence
the direction of impending slip; RAs and PCs signal the occurrence of slip with spatiotemporal or
intensive codes depending on whether the microfeature is a local one on a stnooth background, or
is distributed on the surface, respectively. When the surface fealures are of sizes greater than the
response thresholds of all the receptors, redundaut spatiotemporal and intensive infurmation from
all three afferent fiber types is available for the detection of slip. The peripheral neural codes under
these various conditions govern the computational algorithins needed to infer contact conditions
and object features.

(B) Microgeometry

Microgeometry is defined here as the geometry of surface features with heights ranging from
fractions of a micron to tens of microns. Surface microgeometries consisting of single raised dots
or patterns of raised dots or bars were etched precisely on glass using photolithography. Human
detection thresholds and the associated peripheral neural codes were determined for each of these
microgeometries. We have demonstrated that humans can perceive extremely fine gratings com-
posed of bars that are 0.06 micron high, 50 microns wide, and [00 microns apart. We show that
these textures are coded by Pacinian corpuscles whose temporal responses are precisely related to
the spatial period of the gratings and the velocity of stroking.

'Here, we will not consider temperature or pain sense, since these are mediated by a different set of afferent fibers.



(C) Shape

Among the different possible geometric representations of the shape of objects, the intrinsic
description, i.e., the surface curvature as a [uuction of the distance along the surface, seetus to be
relevant for tactile sensing. By using cylindrical specimens of varying curvature and corrugated
surfaces consisting of alternaling convex and councave curvatures, we demonstirate the direct rela-
tionship between SA and RA discharge rates, and the curvature change at the most sensilive spot
on the receptive fields. By applying the results from contact mechanics, we show that the receptors
are responding to the low-pass filtered versions of surface pressures. Thus curvature, which we
know from differential geometry is approximated by the second spatial derivative of surface dellec-
tion, is coded without differentiating (which is a noise enhancing process), but by exploiting its
relation to surface pressure. Use of a linear elastic malerial model enables us to build an idealized
computational theory for neural coding and decoding of arbitrary object shapes indenting the skin.

(D) Compliance

Compliant ob jects can be of two types: (1) Those with a rigid surface (such as a piano key); (2)
Those with a deformable surface (such as cheese). For the former, we used glass plates supported
by springs in a cylindrical sleeve. For the latter, by drastically altering the relative proportion of
constituents used in casting silicone rubber, we were able to design transparent specimens that var-
ied in softness, but were identical otherwise. In order to assess the relative contributions of contact
and kinesthetic information in softness discrimination, we conducted psychophysical experitments
under both active and passive touch, with or without local anesthesia thal blocked the contact iun-
formation. We show that humans are very good al discriminaling subtle dillerences in the solluness
of objects with deformable surfaces, and the discrimination is based entirely on coutact informa-
tion. For compliant objects with rigid surfaces, we show that with active touch, discrimination of
differences in softness is possible, due to the availability of bolh contact and kinesthetic informa-
tion. In discriminations under passive conditions, the absence of kinesthetic information results in
considerable deterioration of discriminability. Using a siraplified theory of softness discrimination
that is based on mechanics of contact, we infer the neural computations that are consistant with
the human performances.
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We investigated the peripheral neural representation of two-and
three-dimensional objects (2DOs and 3DCs). The 2D0Os were corrugated surfaces
consisting of alternating convex and concave cylindrical bars of differing radii of
curvature. The 3DOs were ellipsoidally shaped with a radius of 5 mm along one
axis, and differing radii of 1, 3 or 5 mm along the orthogonal axis.
A servocontrolled translation device brought each object down onto the stationary
fingerpad to achieve a desired force that was maintained as the object was stroked
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series of laterally shifted parallel linear trajectories oriented 0, 30, 60, 90, 120 or
150 degrees with respect to the long axis of the finger with 3DOs. Spatial Event
Plots (SEPs showing relative location of the receptive field on the object whenever
an impulse occurred) were obtained from electrophysiologically recorded
responses of slowly adapting type | and rapidly adapting (Meissner Corpuscle)
mechanoreceptive afferents innervating the monkey fingerpad.

Interpretation of the discharge rate profiles derived from SEPs as
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following conclusions. Discharge rate, an intensive measure of neural response,
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trajectory orientation. Supported by NIH grant NS15888 and ONR contract
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