DSC-Vol. 61, Proceedings of the ASME
Dynamic Systems and Control Division
ASME 1997

A Ray-Based Haptic Rendering Technique for Displaying
Shape and Texture of 3D Objects in Virtual Environments

Cagatay Basdogan
Chih-Hao Ho
Mandayam A. Srinivasan

Laboratory for Human and Machine Haptics
Department of Mechanical Engineering and
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA, 02139
basdogan, chihhao, srini @mit.edu
http://touchlab.mit.edu

Abstract

In this paper, we propose a new ray-based haptic rendering
method for displaying 3D objects in virtual environments. We
have developed a set of softwarc algorithms that work with a
force reflecting haptic interface and cnable the user to touch
and feel arbitrary 3D polyhedral virtual objects. Using the
interface device and the suggested model, the user fecls as if
exploring the shape and surface details of objects such as
textures. The components of the model include a hicrarchical
database for storing gcometrical and material propertics of
objects, collision detection algorithms, a simple mechanistic
model for computing the forces of interaction between the 3D
virtual objects and the force-reflecting device, and a haptic
filtering technique for simulating surface details of objects
such as smoothness and texture. The developed algorithms
together with a haptic interface device have several
applications in areas such as medicine, education, comgputer
animation, teleoperation. entertainment, and rchabilitation.

1. Introduction

Humans explore objects in many steps. Typically, we first
visually scan the environment with our eyes to locate the
position of the object. We then touch the object to feel its
general shape. Finally, a more careful manual exploration is
made to investigate the surface and material characteristics of
the object. Manual sensing of shape, softness, and texture of an
object occurs through tactile and kinesthetic sensory systems
that respond to spatial and temporal distribution of forces on
the hand. Recent advances in virtual reality and robotics
enable the human tactual system to be stimulated in a
controlled manner through force feedback devices, also known
as haptic interfaces. A haptic interface is a device that enables
manual interaction with virtual environments or teleoparated

77

remote systems. They are employed for tasks that arc usually
performed using hands in the real world (Srinivasan, 1995).
Force-reflecting haptic devices generate computer-controtled
forces to convey to the user a scnse of natural feel of the virtual
environment and objects within it. In this regard. haptic
rendering can be defined as the process of displaying computer
controlled forces on the user to make him or her sensc the
tactual feel of virtual objects (Salisbury ct al., 1995). Haptic
rendering is a part of an cmerging ficld we call computer
haptics (analogous to computer graphics), that is concerned
with the techniques and processes associated with generating
and displaying haptic stimuli to the human user (Srinivasan
and Basdogan, 1997).

This paper describes a gencral method for haptic rendering of
3D objects in virtyal environments. For. the sake of simplicity.
we restrict ourselves to static environments composed of rigia
objects. When these virtual objects are explored with a generic
stylus of the force feedback device, the user can f{eel their
shape and texture. The proposed method has four major
components: ’
« a hierarchical database for storing the geometrical
and material properties of virtual objects
« a set of algorithms for detecting the collisions
between the simulated probe of the haptic device and
the 3D virtual objects
« amechanistic model for estimaling the reaction forces
that arise from interactions between the simulated
probe of the haptic device and the virtual object
« a filtering technique for modifying the direction and
magnitude of the reaction forces 1o provide the user
with the tactual sense of surface details such as
smoothness and texture.

The developed techniques are suitable for simulating haptic
interactions between a tool and 3D objects in synthetic
environments. The graphical models of 3D objects and the
generic probe (stylus) of the haptic device are composed of
tniangular clements and displayed on the computer screen. The
hardware components of our sct-up include an IBM compatible
personal computer. runming Open Inventor (Template
Graphics Inc.). to display the graphical model of the 3D virtual
cnvironment. and o force feedback device, PHANToM
{SensAble Technologies Inc). 1o convey to the user a sense of
touch and feel ol virtual objects (see Figure 1) in this
cnvironment

2. Haptic Rendering

The goal of hapuc rendering is to display the shape, surface
and material propertics of arbitrary 3D objects in real time
through a haptic interface Initial haptic rendering methods
focused on displaying object primitives (c.g. cube, sphere,
evlinder. cted. Massic and Salisbury (1994) developed the
PHANToM hapuc intertface device and proposed a simple
method for rendering objects. Using this rendering model, the
user could nteract wath primitive objects such as cube,
cyhinder. and sphere 1n virtual environments through the end
point of the hapuc device which is defined as the haptic
interface point Later. Zilles and Salisbury (1995) developed a
more sophisticated. constraint-based method to render generic
polygonal meshes. They defined a new point. namely the
“god-object”, to represent the location of the ideal haptic
interface pownt. Lagrange multipliers are used to compute the
new location of the god-object point (constrained to remain on
a particular facet of the object) such that the distance between
the god-object and the haptic interface point is minimized..

o Graphics
1nterface

multimodal interactions.

We propose a new haptic rendering method that utilizes the
ray tracing techniques of computer graphics for detecting
collisions between 3D polygonal objects (rigid) and the generic
stylus of the haptic device. The stylus is modeled as a line
segment whose position and orientation are provided by the

78

encoder signals in the haptic interface. We display the
graphical model of the simulated stylus and update its tip and
tail coordinates as the user manipulates the actual one (see
Figure 1). detect any collisions between the simulated stylus
and the virtual object, estimate the reaction foree, and finally
reflect this force lo the user via the haptic device. The
proposed method 15 more suitable for simulating “tool-object”
interactions than carlier techniques and takes into account the
orienlation of the stylus,

2.1 Hierarchical Database and Collision Detection
During the pre-computation phase ol our real-ume
simulations, graphical models of 3D objecls, made of
tnangular elements. arc loaded 1nto computer from a data file
lo construct a database for material and geometrical properties
of objects. The information 1n this database includes the
indices of triangular clements, coordinates of vertices of cach
triangular clement and the connectivity of triangular elements
in a global coordinate system. Using the inlormation in the
database, algorithms compute the bounding box of cach abject
(i.c. a box that is constructed from maxumum and minimum
global coordinates of the object along the X, Y. und Z axes)
and the bounding box and surface normal of cach tnangular
clement of the object. As the user manipulates the stylus of the
force feedback device, we check for collisions between the
simulated stylus and the virtual objects in the environment. In
order 10 speed up the detection of collisions between the
simulated stylus and the objects, a simplified mathematical
model of the stylus is considered. Although the complete 3D
geometrical model of the stylus appears to the user on the
computer screen, the stylus is represented as a line segment for
the purposes of fast collision computations (see Figure 2a).
The tip and tail coordinates of the simulated stylus are updated
in the virtual environment as the user manipulates the real
stylus. The detection of collisions occur in three consecutive
slages:
+ collision detection between the simulated stylus and
the bounding box of the virtual object
« collision detection between the simulated stylus and
the bounding box of the cach triangular clement
« collision detection between the simulated stylus and
the triangular clement itself

2.2 Mechanistic Model

The mechanistic model handles the force-displacement
relationship during interactions between the haptic device and
3D virtual objects. For the sake of simplicity, the mechanical
impedance of the interactions between the simulated rigid
objects and the generic stylus of haptic device 1s modeled by
means of a simple spring law (F = kx). Following the detection
of collision, we compute the distance between the collision
point (i.e. ideal haptic interface point) and the tip of the
simulated stylus (i.e. haptic interface point) and multiply this
distance with the gross impedance of the object to compute the
total reaction force. Then, for frictionless objects, the
component of this force along the direction of surface normal

e collision point is calculated and sent as a force command
feedback device to provide the user with the tactual

sation of object shapes. This concept is depicted in Figure
. In this figure, A represents the haptic interface point, and
gbis the collision point which is on the surface of the polygon.
The component of the vector (AP) along the surface normal
(/"—’s) is multiplied by stiffness coefficient (k) to compute the

at th
to the force

reaction force in the normal direction. Since the virwal objec.[s
can have only 2 finite stiffness, the haptic interface point will
penetrate into the object until the reaction force prevents the
user to move further.

Y
)_'x
z (a)

Figure 2. (a) The stylus is modeled as a line segment (Ié)
for the purposes of fast collision computations. {b) Following
the detection of collision, the reaction (contact) force is
computed using the mechanistic model (F=k AP).

(b)

We have also successfully added static and dynamic {rictional
forces to the normal component of the reaction force in the
direction tangential to the motion, by modifying the technique
described in Salisbury ct al. (1995). In the future, we plan to
develop more sophisticated mechanistic models to handle
various types of “instrument-object” interactions.

2.3 Haptic Shading and Filtering

Surface Smoothness: In computer graphics, illumination
models are used to compute the surface color at a given point
of a 3D object (Foley et al., 1995). Then, shading algorithms
are applied 1o shade each polygon by interpolating the light
intensities (Gourand shading) or surface normals (Phong
shading). In addition 1o giving an impression of the three
dimensionality of the object, shading algorithms make the
shared edges of the adjacent polygons invisible and provide the
user with the display of visually smooth surfaces (Watt and
Watt, 1992). One can integrate a similar approach into the
study of haptics to convey the feel of haptically smooth object
surfaces. It 1s well known that our tactile sensory system is
sensitive 10 edges and curvatures (Srinivasan and LaMotte,
1991) of objects. Hence, 3D geometrical objects which are

79

constructed from polygons and look smooth to our eyes on the
computer screen do not feel smooth haptically due 10
discontinuities in force and geometry. To overcome this
problem, Morgenbesser and Srinivasan (1996) suggested the
idea of force shading, analogous to Phong shading in visual
displays. Force Shading refers to a controlled variation in the
direction of the force vector to minimizc or eliminate the edge
effects during haptic rendering of polygonal surfaces. These
modified forces are then reflected to the user through a haptic
interface device. This methed with different force interpolation
techniques has been used by Ruspini et al. (1996) and Fuku
(1996) to display object shape.

We improved the smoothing technique originally suggested by
Morgenbesser and Srinivasan, to render 3D objects. The
proposed technique satisfies the boundary conditions and
provides a more uniform haptic smoothing. During the pre-
computation phase of our simulations, we compute the surface
normal at each vertex by averaging the surface normals of
neighboring polygons, weighted by their ncighboring angles.
During the real-time computations, we first detect the collision
point which divides the collided triangle into threc sub-
triangles. Then, the normal vector at the point of contact (N;)

can be calculated by using an arca based interpolation as
follows;

R)

where, N,'s arc the prc-computed vertex normals of the
collided triangle, and A, s arc the areas of the sub-tniangies
respectively.

Haptic texturing:

Haptic texturing is a method of simulating surface properties
of objects in virtual environments in order to provide the user
with the feel of macro and micro surface details. Several
texturing techniques have been described by other authors
(Siira and Pai, 1996; Plesniak and Underkoffler, 1996; Fritz
and Barner, 1996).

Approach: Our approach is to haptically render the wvirtual
objects using the “bump mapping” technique of computer
graphics to provide the user with the sense of surface details
such as bumps and textures. Bump mapping is a well known
graphical technique for generating the appearance of a non-
smooth surface by perturbing the surface normals. This

technique was initially proposed by Blinn (1978) as a method
of graphically rendering 3D bumps for modeling clouds. His
formulation depends on parameterization of the surface.
Although the surface parameterization techniques have some
advantages, they may generate uncven bump textures on the
surface of complex shapes. Max and Becker (1994) suggested
a direct mecthod of mapping that does not require a
transformation from global 1o parametric spacc. They
developed a formulation which 1s purely bascd on the original
surface normal and the local gradient of the height field that
generates bumps on the surface of the object. Max and Becker
utilized this techmque to gencrate bumps on cloud contour
surfaces We used the same approach and perturbed the
direction and magnitude of the surface normal (/_lx) to

generate bumpy or lextured surfaces that can be sensed
tactually by the user in virtual environments. The perturbed
surface normals (M) can be computed using the following
formulation;

M=N -Vh+(Vh NN, (2)
Hs h+ dh-

Vh=—i+—j+—4k 3
(].r' (})‘j > (&))]

where, h(y.y.z) represents the height (texture) field function
and Vi is the local gradient vector

Implementation: In order 1o simulate hapuce textures in virtual
environmenis, @ minimum of two parameters are needed;

« aheight descriptor
« afrequency descriptor.

We also need to know the spatial and temporal characteristics
(e.g haptic resolution) of the force feedback device, as well as
the human finger. to properly sct these descriptors in our
simulations. Keeping these in mind, we have ported the
texturing techniques of computer graphics to simulate haptic
textures. The developed haptic texturing techniques can be
classified into two parts: (a) image-based and (b) procedural.
(a) fimage-based haptic texturing: deals with constructing
a texture field from a 2D image data. In computer graphics,
the digital images are wrapped around 3D objects to make
them look more realistic. However, the graphical texture map
conlains only 2D color or gray scale intensities which do not
necessarily correspond to the height intensities of the object
surface. In haptic texturing, the goal is to make the user feel
the height variations of the texture. For this reason, we propose
haptel as a new clement for simulating 1mage-based haptic
textures. Haptel is the smallest element of the haptic texture
and is simply a texel (the smallest clement of the graphical
texture) with a height value. Haptels, when assigned to each

80

texel, will automatically generate a discrete height field in 1
texture coordinate system. For example, the gray sc.
intensity of each texel can be used directly as a heig
indicator to generate a haptic texture field.

Now, the goal is 1o map the height ficld of the digital ima
onto a 3D polygonal object so that we can associate a texiw
coordinate (u,v} with the coordinate of cach vertex (x.y.z). v
map the height intensities of the digital image onto the obje
surface using the (wo-slage texture mapping techniques
computer graphics (Bier and Sloan, 1986; Wall and Wa
1992). The first stage is mapping from 2D texture space to
simple intermediate surface such as a plane, cube, cylinder,
sphere. The second stage provides the mapping from
intermediate surface 10 the object surface which can t
achieved in various ways (Watt and Watt, 1992). W
experimented with a plane and a sphere as our intermedia
surfaces and were able to map a digital image of a “brict
surface onto a 3D object surface using the two-stage mappir
technique (scc Figure 3a and refer to Appendix A f
implementation details).

u

h = f(x,y,z)

(b)

Figure 3. Visual display of textured surfaces that can b«
sensed via a haptic device. (a}) A “brick” texture is mappec
onto a 3D object and its gray scale values are used to generat
a height map that can bc scnsed tactually. (b) Procedura
haptic texturing techniques are used to map the filtered whilc
noise function onto a 3D object.

Once the mapping is achicved, then the aim is 1o compute the
local gradient of the discrete height field at a given objec
coordinate. We first determine the collision point and it
neighboring points which are on the object surface and withir,
a small distance of epsilon (g). Then, we compute the
components of the local gradient vector using the central
difference approximation for partial derivatives:

_ (hH—E _hr—c)
2¢e

oh
— 4)
X

_a_h - (hH—t —ﬁ;-z) (5)
oy 2¢
Vh= —‘;'—‘_h% ; ©)

Jnce the local gradient is known, equation (2) can be used to
serturb the surface normal at the collision point for simulating
mage-based textures.

(b} _Procedural _haptic _texturing: The goal of the
procedural haptic texturing is to generate synthetic textures
using mathematical functions. We used Fourier series,
stochastic functions (c.g. filtered white noise), and a
combination of these mathematical functions with fractals to
generate synthetic texture fields.

To model clouds graphically, Gardner (1985) used Fourier
safies with four 1o seven sine terms according to the following
formulation:

h(x.y)= kZ[C, sin{f, v+ p,)+ T,,]Z{C, sin(g,y+¢,)+7,)

1=1 =1

7N

where, f,.g, are the fundamental frequencies and p,. g, are the
phase frequencies in the x and y directions, C are the
amplitudes of the texture at various frequencics, kand7, are

scalar constants. We applied the above methed to haptically
display periodic texturcd surfaces. (refer to Appendix B for
more details). Once the mathematical function h(x,y)is

defined. such as in Eq.(7), the gradient vector (Vh) at the
point of contact can be computed easily by differentiating the
terms of the function with respect 1o x and y and inserting the
coordinates of the collision point. Then, this vector can be
utilized 1o perturb the surface normal based on the formulation
given by Max and Barker (1994). We have applied Fourier
series approach to haptic texturing and observed that several
different textures could be gencraied by modifying the
frequencies and coefficients of the Eg. (7). However, the
variations decrease as the number of w:ms increase. Moreover,
the haptic resolution (temporal and spatial characteristics) of
the human finger does not precisely match that of the
PHANTOM, hence, the changes made on the direction and
magnitude of the surface normal may need 1o be amplified to
compensate this difference. If the generic probe of the haptic
device is not capable of sensing at the level of human
resolution. then the actual amplitude of the bumps used in
simulations must be a number of times higher than the one
computed from an analytical function.

81

Many of the textures in nature do not have regular {periodic)
patterns. Textures such as sand, grass, fur, rocks, water surface
cannot be modeled easily using the Fourier series. However, it
has been shown that the height of many irregular surfaces
follow Gaussian distribution and can be modeled using
stochastic functions. One of the well known stochastic
functions is white noise. A pseudo-random generalor is a good
source for generating white noise. Perlin (1985) defined a
special kind of stochastic function known as "Noise(x,y,z)" lo
generate 3D synthetic graphical textures (also known as solid
textures). In order to create a solid texture, a 3D cubical lattice
is generated in texture space and pseudo-random numbers are
assigned to each point of the lattice. This can be achieved by
using a simple lookup table or a hashing function (Ebert et al.,
1994). Then, the coordinates of the object are mapped 10 these
lattice points in order to identify which lattice cell we are in
for a given coordinate. Finally, the noise value at this
coordinate is calculated by interpolating the pscudo-random
values at the 8 nearby cell points. Thus, Noise(x.y,z) function
takes a three dimensional vector and returns a scalar
interpolated value. However, we need to know the gradient of
the noise function at the point of contact for the proper
simulation of haptic textures. Perlin (1985} defines a
differential, DNoise(x.y,z), that is the gradient of Noise(x,y.z).
Hence, DNoise(x,y,z) takes the coordinates of the collision
point and returns a pscudo-random gradient vector (see Figure
3b and refer to Appendix C for implementation details). Once
the gradient vector is known, the surface normal can be
perturbed to generate haptic textures.

Another approach for constructing haptic textures is to use
fractals along with mathematical functions such as Fourier
series or noise. Fractals arc also suggested for modeling
natural forms since many natural objects scem to exhibit self-
similarity (Mandelbrot, 1982; Ebert ct al., 1994). For example,
mountains have peaks and each peak contains smaller peaks in
it. If this branching process repeats itself many times and the
entire object becomes similar to its subportions, then the object
is said to be self-similar (Foley, 1995). In order 10 generate
haptic textures using fractals, we need a coarsely approximated
model of the texture surface, then we can recursively subdivide
height and frequency descriptors in the original model untii
the desired level of detail is obtained. In Ebert et al. (1994),
Musgrave refers to this underlying model as the basis function
(e.g. Fourier series, noise). For example, Musgrave uses
Perlin’s Noise(x,y,z) function to generale various textures
graphically. He consecutively scales down the amplitude and
spatial frequency of the bumps, generated by Noise(x,y,z)
function, and adds them to the original shape. If this process is
repeated several times, we end up with fractal surfaces. In
haptic texturing, optimal value of this number depends on the
spatial and temporal resolution of the human and the haptic
device.

3. Discussion

We have developed generic algorithms which work with force
reflecting haptic interfaces and enable the user to feel the
forces that arise from interactions between simulated
instruments and virtual objects. Our algorithms provide the
user with computer controlled forces for tactual sensing of
shape and surface details while they interact with rigid objects
in virtual environments. Although these algorithms were
implemented on the PHANToM, they are general enough to
work with other types of force feedback devices that enable the
user to feel the forces that arise from interactions between a
variety of simulated tools and objects. Currently, many of the
haptic devices cannot handle interaction torques. However,
more sophislicated ones will be available in the future and the
haptic rendering algorithms proposed here can be generalized
1o enable the user to feel interaction torques and object
compliances. Many of the proposed techniques in this paper
require more testing to validate their utility with various
shapes and textures. Interested readers can refer to the
Proceedings of the First PHANToM Users Group Workshop
(Salisbury and Srinivasan, 1996) for more information on
PHANToM-based haptics. We believe that more
comprehensive studies which explore the haplic characteristics
of humans and machines arec required to characterize and
render 3D objects in multimodal virtual environments.

Acknowledgments

Part of this work was carried out under the contract N61339-
96-K-0002 funded by ONR and NAWC/TSD.

References

Bier, E.A., Sloan K.R., 1986, "Two-Part Texture Mapping”,
IEEE Computer Graphics and Applications, September,
pp. 40-53.

Blinn, JLF., 1978, "Simulation of Wrinkled Surfaces”", ACM
(Proceedings of SIGGRAPH), Vol. 12, No.3, pp. 286-292.

Ebert, D.S., Musgrave F.K., Pcachey D., Perlin K., Worley
S., 1994, “Texturing and Modeling”, AP Professional,
Cambridge, MA.

Foley, J.D., van Dam, A., Feiner, S. K., Hughes, J.F., 1995,
"Computer Graphics: Principles and Practice", Addison-
Wesley.

Fritz and Barner, 1996, “Haptic Scientific Visualization™, in
Proceedings of the First PHANToM Users Group
Workshop, Eds: Salisbury J.K. and Srinivasan M.A. MIT-
Al TR-1596 and RLE TR-612.

Fukui Y., 1996, "Bump mapping for a force display”, in
Proceedings of the First PHANToM Users Group
Workshop, Eds: Salisbury J.K. and Srinivasan M.A. MIT-
Al TR-1596 and RLE TR-612.

Gardner, G.Y., 1985, "Visual Simulation of Clouds", ACM
(Proceedings of SIGGRAPH), July, pp. 297-303,

Mandelbrot, B., 1982, “The Fractal Geometry of Nature”,
W.H. Freeman.

82

Massie T.H., Salisbury J.K., 1994, "The PHANToM I
Interface: A Device for Probing Virtual Obj
Proceedings of the ASME Dynamic Systems and C,
Division, DSC-Vol. 55-1, pp. 295-301.

Max, N.L., Becker, B.G., 1994, "Bump Shading for V¢
Textures”, [EEE Computer Graphics and App., July,
14, pp. 18-20

Morgenbesser, H.B., Srinivasan, M.A_, 1996, "Force Sh:
for Haptic Shape Perception”, Proceedings of the A
Dynamic Systems and Control Division, DSC-Vol. 5¢
407-412.

Perlin, K., 1985, "An Image Synthesizer”, ACM SIGGR,
Vol. 19, No. 3, July, pp. 287-296.

Plesniak and Underkoffler, 1996, “SPI Haptics Libr
Proceedings of the First PHANToM Users C
Workshop, Eds: Salisbury J.K. and Srinivasan M.A.}
AI'TR-1596 and RLE TR-612

Ruspini, D.C., Kolarov, K., Khatib O., 1996, “Robust H
Display of Graphical Environments™, in Proceeding
the—First PHANToM Users Group Workshop,
Salisbury J.K. and Srinivasan M.A. MIT-Al TR-159¢
RLE TR-612.

Salisbury, I.K., Srinivasan, M.A., 1996, Proceedings o
First PHANToM Users Group Workshop, Sept. 2%
MIT Endicott House, Dedham, MA. (RLE TR-612, }
also available from http://www.ai.mit.edu/publications

Salisbury, 1.K., Brock, D., Massie, T., Swarup, N., Ziile
1995, “Haptic Rendering: Programming touch interac
with virtual objects”, Proceedings of the ACM Sympo:
on Interactive 3D Graphics, Monterey, California.

Siira, J., Pai D. K., 1996, “Haptic Texturing - A Stoch:
Approach”™, Proceedings of the IEEE Internatic
Conference on Robotics and Automation, Minneap:
Minnesota, pp. 557-562.

Srinivasan, M.A., LaMotte R.H., 1991, "Encoding of shap
the responses of cutaneous mechanoreceptors”,Informa
Processing in the Somatosensory System, Ed.; O. Fran
and J. Westman, pp. 56-69, Macmillan Press.

Srinivasan, M.A., 1995, “Haptic Interfaces”, In Vir.
Reality: Scientific and Technical Challenges, Eds:

Durlach and A. S. Mavor, pp. 161-187, National Acad¢

Press.
Srinivasan, M.A., Basdogan, C., 1997, “Haptics in Vin
Environments: axonomy, Research Status,

Challenges”, Computers and Graphics (in press).

Watt, A., Wat, M., 1992, "Advanced Animation
Rendering Techniques”, Addison-Wesley, NY.

Zilles, C.B., Salisbury, J.K., 1995, “A Constraint-based G-
object method for haptic display”, [EEE Internatio.
Conference on Intelligent Robots and System.

Appendix A

Image-based haptic texturing that does not depend on i
shape of the object, known as two-stage mapping, is descrit
in detail in Bier and Sloan (1986) and Watt and Watt (199

Here, we briefly describe the steps of mapping a 2D texture
image onto a 3D intermediate surface such as sphere, and then
onto the object surface (see Figure 4).

e Use the “bounding box” coordinates of the object to
calculate the center point, C(x,y,z).

. Calculate the collision point, P(x,y,z) using the ray-based
collision detection algorithm.

« Map the object coordinates to spherical coordinates such
that we can associate the point P(x,y,z) with a point on a
unit sphere, S(r=10,6.¢).

where,

0<9<2mand 0<¢<n

¢ Map the spherical coordinates to image coordinates (u,v)
such that we can associate the point S with a height value
(i.e. haptel).

(u\v):{—e-.%} u,ve[0l] (A.]1)

2r

S

Object
Surface

Intermediate
Surface

Figure 4. Schematic of mapping 2D images onto 3D surfaces
for generating image-based haptic textures: Following the
compuiation of the collision point (point P), we compute its
equivalence in spherical coordinates (point S) using the center
coordinates of the bounding box that encloses the object (point
C). We finally define a mapping function between the image
coordinates (u,v) and the spherical coordinates to associate the
point S with a height value.

Appendix B

Fourier series: Gardner(1985) suggests that natural looking
texture patterns can be produced if the frequencies and
coefficients of Eq. (7) are chosen by relationships:

fu =21,
8., =2g,

83

J2
Cul = _C.
2
Moreover, Gardner increases the texture variations by shifting
the sinc component in the x direction as a function of y and the

y component as a function of x using the following relations

(B.1)

p, = (%)sin(—%i) i>1
g = (%)sin(%f) P> (B.2)
Appendix C

DNoise function takes the coordinates of the collision point
and returns a pscudo-random vector ‘In Ebert et al. (1994),
Perlin describes the steps of gencrating graphical textures
using the noise function. Here, wec bricfly describe the
algorithm for the convenience of the rcader. More details can
be found in Ebert et al. (1992) and Perlin (1985).

e Generate a table of “256" pscudo-random unit vectors,
G[256](3].

e Generate a column of “256" pscudo-random integers,
M[256]. varying from O to 255 such that each number
occurs only once.

¢ Calculate the collision point, P(x,y,z) using the ray-bascd
collision detection algorithm.

* Adjust the spatial frequency of the noisc signal (x =
x/wavelength; y = y/wavelength; z = 2/wavelength)

¢ Map the coordinates of the collision point P(x,y.z) to the
lattice cells and compute the collision coordinates
P(u,v.w) rclative to the cubic cell that we are in (sec
Figure 5).

i= floor(x), j= floor(y),k = floor(z),
Pluviw)s(x—i,y— j.z—k) (C.1)
wherc,
i, j.k represent the indices of the lowest corner of the
cell in which we are in.
¢ Use the column vector M to index into the table G forthe
cach corner of the cell.

G. k= G[mod(mod(mod(M {i).256)+ M| j].256)+ M[k],256)1{3]

L
(C.2)

e Assume a weight function, Q(u,v,w), where the variation
of weight for cach component is given by a cubic
approximation. Smoothly interpolate the noise gradient
assigned to each corner of the cubic cell with the weight
function such as

Qv w) = (1-3u2 + 262 (1= 32 + 203 e (1-3w? +20°)
(C.3)

e Calculate the derivative of noise as the summation of
eight corners of the cell by taking into account the
pseudo-random vector at each cornmer, weight function,
and the distance from each corner of the cell to P(u,v,w).

Noise = { Quv.w)G; ; 1)+ QU)G,y ;)+

Q(I—-u,l—v,w)(G‘- k)+Q(I—u,l—v,]—w)(G-

1+, i+l j+ik+00 Y

Qul—v,l -W)(G,-'H_ Lk+ P+ vl —W)(Gi.j.k 07
QI —wu,v,l— W)(Gi+ 1j.k s Qul - V‘w)(cl,j+ I.k) }

(C4

DNoise = (T.% Noise)i + (% Noise)j + (5‘7; NoiseYk (C.5)

-

(11 Jel.kedt
PRSIV

f‘p\
s

Figure 5. Procedural haptic texturing (implementation of noise
textures): The space that surrounds the 3D object is divided
into a lattice of cubical cells and a unit pseudo-random vector
is assigned to each corner of the cell. Following the detection
of the collisions, we first compute which cubical cell we are in.
Then, the derivative of the noise at the collision point is
calculated as the derivative of the weighted sum of the
distances of each corner from the collision point times the
pseudo-random vectors assigned to the corners of the cell.

