Chih-Hao Ho!

Cagatay Basdogan?
Mandayam A. Srinivasan?
Laboratory for Human and Machine
Haptics

Department of Mechanical
Engineering and

Research Laboratory of Electronics
Massachusetts Institute of
Technology

Cambridge, MA 02139
http://touchlabmit.edu
Ichihhao@mit.edu
Zbasdogan@mit.edu
3srni@mit.edu

Presence, Vol 8, No 5, October 1999, 477491
© 1999 by the Massachusetts Institute of Technology

Efficient Point-Based Rendering
Techniques for Haptic Display of
Virtual Objects

Abstract

Computer haptics, an emerging field of research that is analogous to computer graph-
ics, is concermned with the generation and rendening of haptic virtual objects. In this
paper, we propose an efficient haptic rendering method for displaying the feel of 3-D
polyhedral objects in virtual environments (VEs). Using this method and a haptic inter-
face device, the users can manually explore and feel the shape and surface details of
virtual objects. The main component of our rendering method is the “neighborhood
watch” algorithm that takes advantage of precomputed connectivity information for
detecting collisions between the end effector of a force-reflecting robot and polyhe-
dral objects in VEs. We use a hierarchical database, multithreading techniques, and
efficient search procedures to reduce the computational time such that the haptic
servo rate after the first contact is essentially independent of the number of polygons
that represent the object. We also propose efficient methods for displaying surface
properties of objects such as haptic texture and friction. Our haptic-texturing tech-
niques and friction model can add surface details onto convex or concave 3-D po-
lygonal surfaces. These haptic-rendering techniques can be extended to display dy-
namics of rigid and deformable objects.

1 Introduction

Computer graphics—concerned with the generation and rendering of
graphical images—has established itself as a major area of research in the past
few decades. Recent developments in force-reflecting devices that enable the
user to touch, feel, and manipulate virtual objects have given rise to a need for
the systematic development of methods to generate and display virtual objects
with haptic attributes. We have proposed the term computer haptics to encom-
pass the research concerned with the generation and haptic rendering of virtual
objects (Srinivasan & Basdogan, 1997).

The goal of haptic rendering is to display the haptic attributes of surface and
material properties of virtual objects in real time via a haptic interface device.
Haptic display of 3-D objects in VEs, with various applications in many areas of
human-machine interactions, has emerged as an exciting and challenging re-
search topic for scientists and engineers during the last few years. (Refer to
Srinivasan (1995) and Burdea (1996) for an overview of hardware, human fac-
tors, and applications; Srinivasan and Basdogan (1997) for an overview of our
work, including haptic rendering; and Salisbury et al. (1995) and Salisbury and
Srinivasan (1997) for Phantom-based haptics.) It is generally accepted that, for

Hoetal 477

478 PRESENCE: VOLUME 8, NUMBER 5

the “touch and feel” of objects in VEs to appear natural,
the haptic servo rate should be of the order of 1,000 Hz.
In other words, the computational time for each haptic
servo loop (where a reaction force vector is computed
for each position input) should take about a millisecond
or less. If the 3-D objects in VEs are simple primitives
(e.g., cube, cone, cylinder, sphere, etc.), this goal can be
easily achieved. However, realistic synthetic environ-
ments usually require multiple 3-D objects that have
complex surface as well as material properties. There-
fore, the development of efficient haptic-interaction
techniques that can render arbitrary convex and concave
3-D objects in a time-critical manner becomes essential.
We view the haptic rendering of virtual objects to consist
of two parts: (1) a baptic-interaction pavadigm that de-
fines the nature of the “haptic cursor’ and its interaction
with object surfaces, and (2), an o&ject property display
algorithm to render surface and material properties of
objects through the repeated use of the haptic-interac-
tion paradigm.

Initial haptic-rendering methods focused on display-
ing simple object shapes. Massie and Salisbury (1994)
developed the PHANToM haptic interface device and
proposed a simple method for the haptic rendering of
objects. In this haptic-interaction model, the user could
interact with primitive 3-D objects in VEs through the
end point of the haptic device, which is defined as the
haptic interface point (HIP). Later, Zilles and Salisbury
(1995) developed a more sophisticated, constraint-based
method to render generic polygonal meshes. They de-
fined a “god-object” point to represent the location of a
point that is constrained to remain on a particular facet
of the object. Lagrange multipliers are used to compute
the new location of the god-object point such that the
distance between the god-object and the haptic interface
point is minimized. Adachi et al. (1995) and Mark et al.
(1996) suggested an intermediate representation (a tan-
gent plane) to render virtual surfaces. Although the
forces are updated frequently (~1 kHz), the tangent
plane is updated more slowly. Ruspini et al. (1997) pro-
posed an approach similar to the god-object technique
and improved the collision-detection algorithm by con-
structing a bounding sphere hierarchy and configuration
space. In a departure from the point-based methods de-

scribed above, Basdogan et al. (1997) proposed a ray-
based interaction technique in which the probe is mod-
eled as a line segment rather than a point. Using the ray-
based interaction technique, we can simulate the contact
between the tip as well as the side of the probe with sev-
eral convex objects at the same time. We can then com-
pute the associated forces and torques to be displayed to
the user.

In addition to the interaction paradigms described
above, additional techniques have been proposed for
displaying surface properties such as shape, friction, and
texture of virtual objects. Morgenbesser and Srinivasan
(1996) have proposed force-shading methods to smooth
the feel of polyhedral objects by eliminating the force
discontinuities at polygonal boundaries. Salcudean and
Vlaar (1994), Salisbury et al. (1995), Chen et al. (1997)
and Green and Salisbury (1997) have proposed tech-
niques to simulate friction on smooth surfaces. Minsky
etal. (1990, 1995) have proposed algorithms to simu-
late textures on 2-D surfaces. Siira and Pai (1996) and
Fritz and Barner (1996) have also proposed methods to
generate stochastic textures on well-defined surfaces.
Basdogan et al. (1997) have developed techniques for
the haptic texturing of polyhedral objects.

In this paper, we describe an efficient haptic-interac-
tion paradigm as well as algorithms for the haptic display
of surface properties. One of the major concerns in hap-
tic interaction is that the computational time usually in-
creases with the number of polygons. In such a case, the
quality of the haptic interaction will depend on the com-
plexity of the environment. If the reflected forces cannot
be updated at a sufficiently high rate, contact instabilities
occur. In order to have stable haptic interactions, an effi-
cient collision-detection algorithm that makes the com-
putational time essentially independent of the number of
polygons of an object would be quite beneficial (Ho et
al., 1997). We present a haptic-interaction method that
utilizes a hierarchical database, a client-server model,
and a local search technique geared towards achieving
this goal. To display object surface properties, we extend
the friction model proposed by Salcudean and Vlaar
(1994) and Salisbury et al. (1995) to simulate bumpy
frictional surfaces by spatial variations in the values of
static and dynamic friction coefficients. We also present a

Hoetal. 479

Haptic Visual
Thread ase Thread
@ N Y4 =
x| TAES glE
X B < =3
5 8% Sy ™
2e¥W | &g i i
Haptic Visual
Interface Interface

DISPLAY
FORCE
STATE
DISPLAY
VISUALS

HUMAN OPERATOR

> Visuat
Process - Process
) 34 W
«8 | A &3 2] =
31 =R ERVRS
Y 7| &S 2y "
Haptic Visual
Interface Interface

DISPLAY

FORCE

STATE
DISPLAY
VISUALS

HUMAN OPERATOR

(a)

(b)

Figure |. Software architectures for (a) multthreading and (b) multiprocessing. In the multithreading structure, both the haptic and the graphic
loops share the same database. In this structure, the synchronization of the two loops in accessing the data is important. In the multiprocessing
structure, the haptic and the graphic loops have their own copies of databases that are not shared. The two processes could run on the same

machine or on different machines. The communication protocol between the two loops that ensures consistent update of both graphics and haptics

databases is important in this structure.

technique that can generate textures on arbitrary 3-D
surfaces. This technique is similar to the one proposed
by Basdogan et al. (1997), but it has been extended to
simulate textures with a larger range of height and spa-
tial frequency.

In the next section, we first discuss the client-server
models for synchronizing haptic and visual modalities
and displaying them in an efficient manner. Our colli-
sion-detection algorithm and the hierarchical data struc-
ture for storing geometrical properties of polyhedral ob-
jects are described in Section 3. In Section 4, we present
several methods for displaying surface properties of ob-
jects in VEs via a haptic interface. The results and con-
clusions of the study are summarized in Section 5 and 6,
respectively.

2 Software Architecture for the
Integration of Haptics and Graphics

The hardware components of our setup include a
computer running the Open Inventor graphics toolkit
to display the graphical model of the 3-D virtual envi-

ronment, and a force feedback device, PHANToM
(SensAble Technologies, Inc.), to convey to the user a
sense of touch and feel of virtual objects in this environ-
ment. To have a satisfying experience in interacting with
a VE, the graphics and haptic update rates need to be
maintained at around 30 Hz and 1,000 Hz, respectively.
In order to develop effective multimodal VEs and the
optimal usage of the CPU capabilities, we have experi-
mented with multithreading and multiprocessing tech-
niques and successfully synchronize the visual and haptic
servo loops (Ho et al., 1997). In both models, the hap-
tics and graphics processes are server and client, respec-
tively. The conceptual difference between the mul-
tithreading and the multiprocessing structures is
illustrated in Figure 1.

Our experience is that both multithreading and mult-
processing techniques are quite useful in achieving high
graphic and haptic rendering rates and stable haptic in-
teractions. The choice of multiprocessing or mul-
tithreading structures should depend on the characteris-
tics of the application. Although creating a separate
process for each modality seems to require more pro-
gramming effort than multithreading, it enables the user

480 PRESENCE: VOLUME 8, NUMBER 5

to display the graphics and /or haptics on any desired
machine(s). If large amounts of data will need to be
transferred back and forth frequently between the loops,
we recommend multithreading techniques implemented
with timer callbacks for synchronizing the haptic and
visual servo loops.

3 Haptic-Interaction Paradigm

Two important issues any haptic-interaction para-
digm has to specify are (1) colizsion detection: the detec-
tion of collisions between the end point of the generic
probe and the objects in the scene, and (2) collision re-
sponse: the response to the detection of collision in terms
of how the forces reflected to the user are computed. A
good collision-detection algorithm not only reduces the
computational time, but also helps in correctly display-
ing interaction forces to the human operator to make
the haptic sensing of virtual objects more realistic.
Whereas the collision-detection procedures for haptics
and graphics are the same, the collision response in hap-
tic rendering differs from that in computer graphics. In
computer graphics, collision-detection (Cohen et al.,
1995; Lin, 1993; Gottschalk et al., 1996; Smith et al.,
1995; Hubbard, 1995) techniques are used to detect if
two objects overlap. When the collision is detected, ob-
jects are separated from each other using collision-re-
sponse methods (Moore & Wilhelms, 1988; Baraff|
1994; Mirtich, 1996; Mirtich & Canny, 1995). In gen-
eral, the purpose of the collision detection and response
in graphics is to avoid the overlap between objects and
to simulate the behavior of objects following the over-
lap.

In contrast, the purpose of collision detection in hap-
tic rendering is not only to check collisions between ob-
jects, but more frequently to check collisions between
the probe and virtual objects to compute the interaction
forces. When simulating interactions between the probe
and the objects, the reflected force typically increases
with the penetration distance such that it resists the
probe from further penetrating the object. Thus, the
end point of the probe will always be inside the object
during the collision-response phase. This is a major dif-

ference between the collision-response techniques devel-
oped for haptic and graphic interactions. In graphics,
typically the existence of the overlap needs to be de-
tected, followed by collision-response algorithms. In
haptics, the main goal is to compute the reaction force.
Hence, the depth of penctration and how the penetra-
tion evolves are important. After detecting a collision
between the simulated probe and the objects, a simple
mechanistic model—such as Hooke’s law (F = kx,
where x is the penetration vector)—<an be used to calcu-
late the force. One simple way to determine the depth of
penetration is to use the shortest distance between the
probe tip and the object’s surface (Massie, 1993; Massie
& Salisbury, 1994). This approach works well for primi-
tive objects such as a cube, sphere, cylinder, etc; how-
ever, the drawbacks of this technique are that it cannot
display the objects that are thin or polyhedral (Massie,
1993; Ruspini et al., 1996, 1997). Another approach to
decide the depth of penetration is to use a constraint-
based method (Zilles & Salisbury, 1995). This method
defines an imaginary point—the god-object point—that
is constrained by the facets of the object. The penetra-
tion depth could then be defined as the distance from
the god-object to the probe tip. This approach can be
applied to polyhedral objects, even when the objects are
thin. However, this method requires different sets of
rules to handle concave and convex objects.

In the following sections, we propose “‘neighborhood
watch,” an efficient haptic-rendering technique that can
handle both convex and concave objects uniformly. Al-
though this algorithm is conceptually similar to the god-
object algorithm (Zilles & Salisbury, 1995), it follows a
different approach. We believe that our approach re-
duces the computational time, makes the haptic servo
rate independent of the number of polygons of the ob-
ject, and results in more-stable haptic interactions with
complex objects.

3.1 Hierarchical Database

In our approach, the first step is to construct a hier-
archical database to store the geometrical properties of
the 3-D objects. We use the Open Inventor file format
for graphical display of 3-D objects in VEs. After loading

Hoetal 481

Poly}Tedron
[! 1
Vertex Line Polygon
Normal Normal Neighbors Neighbors
Neighbors I__J_—I Normal
[———-Lj Vertices Polygons
Vertices Lines

Lines Polygons

Figure 2. The hierarchical database. The polyhedron representing the
object is composed of three primitives: vertex, line, polygon. Each
primitive is associated with a normal vector and a list of its neighbors

the Inventor object files (3-D objects are assumed to be
made of indexed triangles), the coordinates of the verti-
ces and the indices of the polygons are automatically
stored in our hierarchical database. Using this informa-
tion, we construct another type of 2-D geometrical
primitive—namely, the lines that are simply the edges of
the triangular polygons. As a result, the polyhedral ob-
jects in our own database are made of three types of 2-D
geometrical primitives: polygons, lines, and vertices. In
order to implement a fast search technique for detecting
collisions between the probe and 3-D objects, we extend
our database such that each primitive has a list of its
neighboring primitives. Each polygon has neighboring
primitives of lines and vertices; each line has neighboring
primitives of polygons and vertices; and each vertex has
neighboring primitives of polygons and lines (Figures 2
and 3). In addition to the connectivity information, we
compute the normal vector of each primitive. For a poly-
gon, the normal is the vector that is perpendicular to its
surface and points outwards. For a line, its normal is the
average of the normals of its neighboring polygons. For
a vertex, its normal is the average of the normals of its
neighboring polygons, linearly weighted by the associ-
ated angle subtended at the vertex.

3.2 Collision Detection and Response

When exploring virtual environments, we interact
with objects through the end point of the probe (the
HIP). At the same time, we also consider another

point—the Ideal Haptic Interface Point (IHIP), which is
similar to the god-object point (Zilles & Salisbury,
1995)—to follow the trace of the HIP. The HIP is not
constrained and, consequently, can penetrate the object.
However, we constrain the IHIP such that it does not
penetrate any object. When the HIP is outside the vir-
tual object, the IHIP will be coincident with the HIP. If
the HIP penetrates a virtual object, the IHIP will stay on
the surface of the object. When the HIP is outside the
object, we keep track of its path and check if this path
penetrates any polygon. For this purpose, we construct a
line segment between the previous and current coordi-
nates of the HIP and detect the collisions between this
line segment and the polygons of the 3-D object. (Be-
cause the servo rate is around 1 kHz and human mo-
tions are relatively slow, this line is very short.) To
achieve fast detection of collisions between the line seg-
ment and the polygonal objects, we utilize the “hierar-
chical bounding boxes” approach (Gottschalk et al.,
1996). In this approach, polygons of the 3-D object are
hierarchically partitioned a priori until each polygon is
enclosed by its own bounding box. The detection of
collisions occurs in three consecutive stages. First, colli-
sions of the line segment joining the current and previ-
ous HIP with the bounding box of the object are de-
tected. If the line segment is inside the bounding box,
then collisions are checked with the partitioned bound-
ing boxes along the branches of the hierarchical tree by
marching from the top of the tree downwards. As colli-
sions are detected with successive bounding boxes along
a particular branch of the tree, the last collision is
checked between the line segment and a polygon itself at
the lowest level of the tree. If the line segment pen-
etrates a polygon, we set this polygon as the contacted
geometric primitive. The IHIP will then be constrained
to stay on the surface of this polygon. The nearest point
from this polygon to the current HIP is set as the THIP,
and the distance from the IHIP to the current HIP is set
as the depth of penetration.

Although the first contacted geometric primitive is
always a polygon and the IHIP is assigned to be on the
surface of this polygon, it can easily be a line or a vertex
in subsequent iterations (i.e., the IHIP can be con-
strained to stay on the edge or vertex of a polygon as

482 PRESENCE. VOLUME 8, NUMBER 5

3¢,

&/

(@ (b)

()

Figure 3. lllustration of how to define the neighbors of a vertex, line, and polygon for an object. In this figure (a), the vertex
has six neighbonng lines and six neighboring polygons. (b) the line has two neighboring vertices and two neighboring polygens.

(c) the polygon has three neighboring vertices and three neighboring lines.

well as on the surface of the polygon). In the next itera-
tion, we calculate the nearest distances from the current
HIP to the contacted geometric primitive and its neigh-
boring primitives. For example, if the contacted primi-
tive is a polygon, then we check the distance from the
current HIP to the neighboring lines and vertices. This
local-search approach significantly reduces the number
of computations and also makes them essentially inde-
pendent of the number of polygons that represent the
objects. Then, we set the primitive that has the shortest
distance to the current HIP as the new contacted geo-
metric primitive and move the IHIP to a point that is
located on this primitive and is nearest to the current
HIP. (See Figure 4.) This rule-based algorithm is repeat-
edly applied for the ensuing interactions.

In each cycle, one also needs to check if the current
HIP is still inside the virtual object. For this purpose, we
construct a vector from the current HIP to the THIP. If
the dot product of this vector and the normal of the
contacted primitive is negative, the current HIP is no
longer inside the object and there is no longer any pen-
etration. If the dot product is positive, then the current
HIP is still inside the object, and the magnitude and di-
rection of the vector from the current HIP to the IHIP

can be used for the force computations. The pseudocode
for our haptic-interaction algorithm we call “neighbor-
hood watch” is given below (Ho et al., 1997).

if (collision == FALSE)
if (the path of HIP penetrates a polygon)
Set the polygon as the contacted geometric
primitive
Move the IHIP to a point on this gurface that is
closest to current HIP colligion +— TRUE;

!
J
else
[
contacted geometric primitive «— the contacted
gecmetric primitive in the previous loop;
primitivel «— contacted gecmetric primitive ;
distancel — closest distance from current HIP to
primitivel;
repeat |
primitivel «— contacted geometric primitive;
for (i=1 : number of neighboring primitives of
primitivel)

(

Hoetal 483

HIP,,

Figure 4. Haptic interactions between the end point of the probe and 3-D objects in VEs: Before the
collision occurs, the HIP is outside the object surface and is identical with the (HIP (see HIP,.5, HIP,,; and
HiIP, ;). When the HIP penetrates into object at time = ¢, the IHIP is constrained to stay on the surface. At
time = t -+ [, HIP moves to a new location (HIP,4 (), and the new location of IHIP is determined from the
current HIP and its neighboning pnmitives based on the nearest distance cniterion.

primitive2 «— the i*® neighboring primitive of

primitivel;

distance2 « distance from current HIP to

primitive2;

if (distance2 < distancel)

[
contacted geometric primitive +— primitive2;
distancel «— distance2;

}

J

] while (primitivel!= contacted geometric
primitive)
Move IHIP to a point that is nearest from the
contacted geometric primitive to current HIP
vectorl «— vector fram current HIP to current IHIP;
normall «— normal of the contacted geometric
primitive;
if (dot product (vectorl, normall) <0)
colligion +— FALSE;
else
I
collision «— TRUE;
penetration vector «— vectorl;

penetration depth «— magnitude of penetration

vector;

J
l

Using this algorithm, we can haptically render both con-
vex and concave objects in an efficient manner. The
computational time for detecting the first collision will
be of the order of log(N) for a single object, where N is
the number of polygons (Gottschalk et al., 1996). After
the first collision, we consider only the distances from the
current HIP to the contacted primitive and its neigh-
bors to determine the new location of IHIP; therefore,
the servo rate will be fast because it depends only on the
number of the contacted geometric primitive’s neighbors.
For a homogeneously tessellated polyhedron, as N in-
creases, because the number of computational operations
for searching the neighbors of each primitive is about the
same, the servo rate will continue to be independent of the
total number of polygons after the first collision.

484 PRESENCE. VOLUME 8, NUMBER 5

4 Haptic Display of Surface Properties

When we explore objects in the real world, we sel-
dom contact smooth, frictionless surfaces. Therefore, in
addition to the shape of objects, surface property is an-
other important factor that could increase the natural-
ness of VEs. In our simulations, surface properties are
separated into two different categories: texture and fric-
tion. From a computational viewpoint, texture is expen-
sive to represent as shape. However, both friction and
texture can be simulated by appropriate perturbations of
the reflected forces. The major difference between the
friction and the texture simulation via a haptic device is
that the friction model creates only lateral forces and the
texture model modifies both the lateral and normal
forces.

The simulation of static and dynamic friction gives
users the feeling as if they are stroking the surface of
sandpaper (Salisbury et al., 1995). By changing the
mean value of the friction coefficient and its variation,
we can efficiently simulate various surfaces (Siira & Pai,
1996; Green & Salisbury, 1997). Textures can be simu-
lated by simply mapping bumps and cavities onto the
surface of objects. Minsky (1995) presented a method to
simulate 2-D haptic textures by perturbing the direction
of reaction force. In contrast to the simulation of surface
properties that add roughness to a smooth surface, the
force-shading technique (Morgenbesser & Srinivasan,
1996; Basdogan et al., 1997; Ruspini et al., 1997) elimi-
nates the surface roughness. When the objects are repre-
sented as polyhedrons, the surface normal and the force
magnitude are usually discontinuous at the edges. By
using the force-shading technique, we can reduce the
force discontinuities and make the edges of polyhedral
object feel smoother.

4.1 Force Shading

During haptic rendering, we can compute the
point of contact and retrieve information about the con-
tacted primitive from the database. To compute the
shaded force vector, we consider only the vertex normals
of the original unshaded surface. In this regard, if the
contacted primitive is a vertex, the normal of the vertex

Figure 5. The collision pont (IHIP) divides the collided tnangle into
three subtriangles. The point in the center is the collision point. Points |,
2, and 3 are the three vertices of the tnangle. N,'s are the normals of
the vertices, A’s are the areas of subtriangles, and N < is the normal at

the collision point.

is used directly as the normal of the collision point. If the
contacted primitive is a line, the normal at the collision
point is the average of the normal of the line’s two
neighboring vertices, weighted by the inverse of the dis-
tance from the collision point to the vertices. If the con-
tacted primitive is a polygon, because our objects are
made of triangles, the collision point will divide the col-
lided triangle into three subtriangles. (See Figure 5.) We
then calculate the normal (Nj) at the collision point by
averaging the normals of the vertices (N,) of the con-
tacted polygon, weighted by the areas A; of the three
subtriangles (Equation 1).
3
AN,
N §= i3—" (1)
24
i=1

Although the interpolation of the vertex normals makes
the normal vector N continuous at the edges, the user
can still feel the existence of the edges due to the discon-
tinuities in the force magnitude. (Because of the limited
position-tracking ability of the user, the depth of pen-
etration is not held constant while the operator moves
the probe of a haptic device from the surface of one

Hoetal. 485

Interpolated
Surface Normal (I‘%s)
Normal
Projected
IHIP HIP
¢/
v/
HIP &

Figure é. The direction and magnitude of force with force-shading
techmque. Before applying force shading, the vector from HIP to IHIP 1s
used to determine the force. After applying the force-shading techrique,
the vector from HIP to the projected HIP is used to compute the force.

polygon to another to explore the shape of a polyhe-
dron.) To minimize this problem, we project the HIP to
the object surface along the direction of the interpolated
normal vector (Ny). The distance between the projected
HIP and the current HID is then used to determine the
magnitude of the force. (See Figure 6.) This method
works well when the penetration of HIP is small com-
pared to the size of the polygon. If the penetration
depth is larger than the length of the edge of the con-
tacted polygon, the users can still feel the existence of
the edges. Force shading should be implemented appro-
priately depending on the geometry of the object that is
being represented. It should be turned on to minimize
the effects of artificial edges created by the polygonal
representation, whereas it should be turned off when the
objects have natural edges (e.g., the force-shading tech-
nique should be used to smooth the lateral surfaces of a
circular cylinder made of polygons and not for the flat
ends.)

4.2 Friction

As mentioned earlier, friction can be simulated by
adding a lateral force vector to the normal force vector.
We extended the friction model proposed by Salcudean
and Vlaar (1994) and Salisbury et al. (1995) to simulate

various types of bumpy frictional surfaces by changing
the static and dynamic friction coefficients at different
spatial locations and to improve the perception of object
surfaces. We can simulate static and dynamic friction
such that the user feels the stick-slip phenomenon when
he/she strokes the stylus of a haptic device over the ob-
ject surface.

Our model has two types of friction states: sticking
and sliding. During the sticking and sliding states, the
static and dynamic friction coefficients are used, respec-
tively. When the first collision is detected, the contacted
point is stored as the sticking point and the friction state
is set as the sticking state. When the users move the HIP,
a tangential resistive force is applied to the user. The
magnitude of the tangential force is decided by the linear
elastic law (?, = kX, where £ is proportional to the static
friction coefficient, and X is the vector from the IHIP to
the sticking point). If the tangential force is larger than
the allowable static friction force (the normal force times
the static friction coefficient), the friction state is
changed to the sliding state and the sticking point is up-
dated and moved to a new location. The location of the
new sticking point is on the line between the old sticking
point and the IHIP. The distance from the IHIP to the
new sticking point is calculated using the inverse of lin-
ear elastic law (X = E,/ky, where kyis proportional to
the dynamic friction coefficient, E is the friction force
that is equal to the normal force times the dynamic fric-
tion coefficient). It should be noted that &, is smaller
than £, as is the case for real objects. Unlike the method
described in Salisbury et al. (1995), we keep the state in
the sliding state, instead of switching to the sticking
state, following the movement of sticking point. The
reason is that, if we change back to the sticking state
right after moving the sticking point, we observed that
the feeling of dynamic friction is lost. In the next itera-
tion, we calculate the tangential force (E; = £;%). If this
force is larger than the dynamic friction force (the nor-
mal force times the dynamic friction coefficient), we
know that the user intends to keep moving the HIP in
the same direction, and, therefore, we keep the state in
the sliding state and use the method mentioned above to
move the sticking point to a new position. However, if
the force (F;) is smaller than the dynamic friction force

486 PRESENCE: VOLUME 8, NUMBER 5

(meaning that the user has stopped moving in the same
direction), we change the state to sticking and do not
update the position of the sticking point. The computa-
tion of frictional force is done continuously as long as
the HIP is inside the object.

Uniform friction all over the object surface is created
when the static and dynamic friction coefficients are
constant and independent of the position. We can also
create periodic frictional surfaces by varying the static
and dynamic friction coefficients at different locations.
More-sophisticated surfaces can be simulated by chang-
ing the distribution of the friction coefficients. Green
and Salisbury (1997) have shown that various grades of
sandpaper can be simulated well by modifying the mean
and variance of the friction coefficient.

4.3 Texture

Texturing techniques can be used to add rough-
ness to a smooth surface. Similar to the role of textures
in computer graphics, haptic textures can add complex-
ity and realism to the existing geometry. Texturing tech-
niques reduce the load on the geometry pipeline because
they reduce the need for expressing texture geometry
explicitly. In computer graphics, the final goal of the tex-
turing computations is to decide the color in each pixel.
Similarly, the final goal in haptic texturing is to decide
the direction and magnitude of the force that will be
reflected to the user. In order to simulate haptic tex-
tures, we need to know IHIP, HIP, and the height field
that will be mapped to the surface. How to compute
IHIP and HIP has already been described in Section 3,
and how to map the height field over the object surfaces
to simulate textures will be described in this section.

4.3.1 Magnitude of Force. When there is no
texture on the surface, we use the elastic law to decide
the magnitude of the force based on the depth of pen-
etration. When a height field is mapped over the surface
to simulate haptic textures, the geometry of the surface
will be changed, which, in turn, will change the depth of
penetration. To correctly change the force, we simply
need to add the texture height at THIP to the depth of
penetration. We choose the height value at IHIP instead

Texture mapped

Criginal Surface /{\—?i ycc\
Y/ 7 id U K
HIP

(a)

o HIP, ﬂmpl /\
ST \
% HIP, \‘/HIPZ

©)

Figure 7. Collision situations may change ofter texture mapping. The
original surface and the surface after texture mapping are shown in (a).
In (b), there 1s no collision between HIP, and the original surface before
the texture 1s mapped, but collision occurs after the texture mapping.
The situation is the opposite for HIP,.

of HIP, because IHIP is the simulated contact point and
is the point that stays on the surface of the object. If we
use the height value at HIP, different penetration depths
will have different height values, although the contact
point is the same.

One other situation that has to be taken into account
in texture display is the collision state. Adding a texture
field over a surface may change the collision state from
no collision to collision or vice versa when the probe is
moved over the textured surface (Figure 7). There may
be a collision between the HIP and the texture-mapped
surface even when no collision exists between the HIP
and the original surface.

To handle all such cases, we compute the nearest dis-
tance to HIP at each iteration using the following rules.
If there is a collision with the original surface, the near-
est point to the HIP is IHIP, and the nearest distance is
the distance between the IHIP and HIP. Because the
HIP is below the contacted geometric primitive, we con-
sider its value as negative. If there is no collision between
the HIP and the primitive, the nearest distance is the
distance between the HIP (the HIP is above the surface
in this case), and the primitive and its value is positive.
With the definition of the nearest-distance concept, we
can easily check the collision status: the collision with
textured surface actually happens only when the nearest

Hoetal 487

distance is less than the height value at the nearest point
on the original surface. (Note that the height value
could be positive or negatve relative to the original ob-
ject surface.) We can define the depth of penetration to
be the height value at the nearest point minus the near-
est distance. If this depth of penetration is negative, it is
set to zero. The magnitude of the force is then calcu-
lated based on the depth of penetration and the mecha-
nistic law that governs the interactions.

4.3.2 Direction of Force. To decide the direc-
tion of the force in the haptic display of texture, we
modify the “bump-mapping” technique of computer
graphics. Bump mapping (Blinn, 1978) is a well-known
graphical technique for generating the appearance of a
non-smooth surface by perturbing the surface normals.
In haptics, if we perturb the direction of the force, we
can also generate a similar effect that makes the users feel
that there are bumps on the smooth surface. The first
step in deciding the direction of force is to determine
the direction of the surface normal. For graphics, Max
and Becker (1994) improved the original bump-map-
ping technique and suggested a direct method of map-
ping that does not require a transformation from global
to parametric space. They developed a formulation that
is purely based on the original surface normal and the
local gradient of the height field that generates bumps
on the surface of the object. Max and Becker utilized
this technique to generate bumps to graphically simulate
clouds. We used the same approach to calculate the per-
turbed surface normals (M).

M= N, - Vb + (VAN)N, (2)
. 0h, 3h, 0h,
Vh=—i+—i+—k (3)

where Mrepresents the normal of the surface after tex-
ture mapping, #(x, ¥, z) represents the height (texture)
field function, Vh is the local gradient vector, and N,
represents the unperturbed surface normal at the colli-
sion point.
The most intuitive way of deciding the direction of

the force is to use the perturbed surface normal (M) as
the force direction. Indeed, our experience shows that

this can give users a very good sensation of texture in
most cases. However, if the amplitude and spatial fre-
quency of the texture are very high and the force applied
by the user to explore the surface is very large, the haptic
device will become unstable due to the sudden changes
in the force magnitude and direction when this algo-
rithm is used. The reason for the instability is that the
magnitude and direction of the force change abruptly
with only a small change in position. To eliminate the
force instability, we modify the approach slightly and use
the normal of the original surface along with the per-
turbed surface normal to calculate the direction.

F=(d- KhN,+ KiM ifd =2Kh (4a)

E=dM if 4<Kh (4b)
where F represents the force that will be displayed to the
users, 4 represents the magnitude of the penetration, N,
represents the normal of the original surface, Mrepre-
sents the perturbed surface normal, Kis a scalar that de-
pends on the properties of the texture, and 4 is the
height of the texture. From Equation (4a) and (4b), we
observe that the force will be in the same direction as the
perturbed surface normal Mwhen the penetration is
small (i.e., the magnitude of the force is small) compared
to the height of the texture. This is the same as in the
bump-mapping approach. However, if the force is large,
only a small amount (the Xh term in Equation (4a)) of
the force is perturbed, and the remaining amount will
still be along the original surface normal. This modifica-
tion will make the interactions with fine textures more
stable. (In our experience with PHANToM force feed-
back device, the simulation gives the best results when
the value of K is between 1 and 2. If the simulated tex-
ture is very smooth, K should be set to 2. If the changes
in texture gradient are sharp, then X should be set to 1
or even smaller).

4.3.3 Height Field of Textures. In order to ap-
ply the proposed texturing techniques, textures must be
CP and C! continuous (Foley et al., 1995). The simula-
tion has the best effect if the height and the wavelength
(i.e., the inverse of the spatial frequency) of the texture

488 PRESENCE: VOLUME 8, NUMBER 5

are of the same order. Taking these constraints into ac-
count, we have ported several texturing techniques of
computer graphics to simulate haptic textures. The hap-
tic texturing techniques can be classified into two parts:
(a) image-based and (b) procedural.

() Image-based baptic texturing: This class of haptic
texturing deals with constructing a texture field from
2-D image data. In computer graphics, the digital im-
ages are wrapped around 3-D objects to make them look
more realistic. The graphical texture map consists of tex-
els with only 2-D color or grayscale intensities, whereas
the haptic texture map consists of texels with a height
value (Basdogan et al., 1997).

The first step to create image-based haptic texture is
to map the digitized image to the 3-D polygonal object.
We usc the two-stage texture-mapping techniques of
computer graphics (Bier & Sloan, 1986; Watt & Watt,
1992) to map the 2-D image to the surface of 3-D ob-
jects. The first stage is to map the 2-D image to a simple
intermediate surface such as plane, cube, cylinder, or
sphere. The second stage maps the texture from the in-
termediate surface to the object surface. After this two-
stage mapping, we can obtain the height value for any
point on the object surface (See Basdogan et al. (1997)
for implementation details.)

After the mapping, the only information we need to
create the haptic texture is the gradient of the height
field at the IHIP. The gradient of the height could be
computed using the central difference approximation for
partial derivatives:

ok (hx+e - hx—e)
ax 2e (5)
a_h B (hy+e - hy—e)
y B 2e
dh . (hz+e - hz—e)
3z 2e
__ ob, ab, b,
TVh=—it+ o+ = 6)

where (%, ¥,) represents the coordinate of the collision
point and € is a small parameter. To compute the gradi-

ent at the IHIP, we estimate the height values that are €
distance away from the THID along the coordinate axes.
Texture heights can be estimated at these points using
the two-stage mapping technique (Basdogan et al.,
1997). For example, 4., represents the estimated height
value at the point (x + €, ¥, 2). Once the local gradient
is known, it can be used to perturb the surface normal
at the collision point for simulating image-based tex-
tures. Note that all the texture values indicated here are
filtered values because of the need for C% and C! conti-
nuity.

(b) Procedural baptic texturing: The goal of proce-
dural haptic texturing is to generate synthetic textures
using mathematical functions. Generally speaking, it is
much more straightforward to obtain the height value
and the gradient of height in this approach. The func-
tion usually takes the coordinates (, y, 2) as the input
and returns the height value and its gradient as the out-
puts. For example, we have implemented the well-
known noise texture (Perlin, 1985; Ebert et al., 1994)
to generate stochastic haptic textures. Fractals are also
suggested for modeling natural textures since many
natural objects seem to exhibit self-similarity (Mandel-
brot, 1982). We have used the fractal concept in combi-
nation with the texturing functions mentioned above
(e.g., Fourier series, noise) with different frequency and
amplitude scales (Ebert et al., 1994) to generate more-
sophisticated surface details. Other texturing techniques
suggested in computer graphics can also be ported to
generate haptic textures. For example, we have imple-
mented haptic versions of reaction-diffusion textures
(Turk, 1991; Witkin & Kass, 1991), the spot noise
(Wijk, 1991), and cellular texture (Worley, 1996;
Fleischer et al., 1995).

5 Results

We have successfully applied the rendering tech-
niques proposed in this paper to render various objects
both on a Windows NT platform and a Unix platform.
In order to demonstrate the efficiency of our haptic in-
teraction technique, we rendered 3-D models with vary-
ing complexities and properties. The structure of our

Hoetal 489

Table I. Haptic Rendering Rates for Various 3-D Rigid and Smooth Objects

Object 1 Object 2 Object 3 Object 4
Number of vertices 8 239 902 32402
Number of lines 18 695 2750 97200
Number of polygons 12 456 1800 64800
Haptic servo rate
(kHz) ~12to 13 ~11to 12 ~11to12 ~91t010

The results were obtained with a Dual Pentium II, 300 MHz PC running two threads and equipped with an advanced
graphics card (AccelECLIPSE from AccelGraphics). Servo rate results are based on rendering 3-D objects for at least 3

min. Rendering test is repeated at least three times for each object.

@) (b)

(c)

Figure 8. Examples of haptically rendered 3-D objects that can be touched and felt through a haptic interface: (a) textured
object, (b) objects with dynamucs, (c) deformable object. The small ball in the figures represents the cursor (called the ideal haptic

interface point, or IHIP)

program includes two separate loops—one for updating
graphics and the other for displaying force. The graphics
update rate is maintained around 30 Hz, although it
decreases slightly during the rendering of texture-
mapped objects or deformable surfaces. We provide hap-
tic rendering examples for four types of objects:

(a) Rigid smooth objects: The number of polygons of
each polyhedron we tested ranges from hundreds
to thousands. (See Table 1.) It can be seen that
the haptic servo rate is approximately constant
even if the number of polygons is increased by
approximately 5,000 times.

(b) Texture-mapped objects: Figure 8(a) shows the

(c)

simulation of a doughnut with texture mapping.
In this simulation, an image-based haptic-textur-
ing technique is used to map 2-D periodic waves
onto the surface of the object. The users were
able to feel the texture of the object when the
surface of the object was explored with a haptic
device.

Dynamic objects: Multiple objects whose dynamics
are governed by the equations of the motion are
simulated. (See Figure 8b.) Dynamical equations
are solved using the Euler integration technique,
and the state of each object is updated at every
iteration. The user can manipulate the objects to

490 PRESENCE- VOLUME 8, NUMBER 5

change their position or orientation dynamically
via the end effector of the haptic device.
Deformable objects: The vertices of the 3-D object
that are in the close vicinity of the IHIP are

(d

~—

moved, along the vector from ITHIP to HID, using
a simple polynomial function to simulate deform-
able objects. Free-form deformation (FED) tech-
niques have also been implemented to change the
topology of surfaces (Basdogan et al., 1998) (see
Figure 8c).

6 Conclusions

In this paper, we have proposed a new point-based
haptic-interaction technique that enables the user to
touch and feel 3-D polyhedral objects and their surface
details. The technique contains the “neighborhood
watch” algorithm, which is capable of handling both
convex and concave objects. After the first contact, the
average rendering time is almost constant for complex
objects independent of the number of polygons used to
represent the object. We have also proposed methods to
simulate surface properties of objects in virtual environ-
ments. In comparison to the existing haptic-texturing
techniques, our texturing technique enables the map-
ping of textures onto 3-D surfaces. With the suggested
models, friction and textures can be easily combined to
generate realistic simulations. Moreover, the suggested
haptic interaction technique can be easily extended to
simulate the dynamics of rigid and deformable objects.

References

Adachi, Y., Kumano, T., & Ogino, K. (1995). Intermediate
representation for stiff virtual objects. Proc. IEEE Virtual
Reality Annual Intl. Symposium °95,203-210.

Baraff, D. (1994). Fast contact force computation for nonpen-
etrating rigid bodies. ACM (Proceedings of SIGGRAPH),
28,23-34.

Basdogan, C., Ho, C., & Srinivasan, M. A. (1997). A ray-
based haptic rendering technique for displaying shape and

texture of 3D objects in virtual environments. ASME Winter
Annual Meeting, 61, 77-84.

Basdogan, C., Ho, C., Srinivasan, M. A., Small, S., & Dawson,
S. (1998). Force interactions in laparoscopic simulations:
Haptic rendering of soft tissues. Proceedings of the Medicine
Meets Virtual Reality VI Conference, 385-391.

Bier, E. A., & Sloan, K. R. (1986). Two-part texture mapping.
IEEE Computer Graphics and Applications, 40-53.

Blinn, J. E. (1978). Simulation of wrinkled surfaces. ACM
(Proceedings of SIGGRAPH), 12(3), 286-292.

Burdea, G. (1996). Force and Touch Feedback for Virtual Real-
1ty. New York: John Wiley and Sons, Inc.

Chen, J., DiMattia, C., Falvo, M., Thiansathaporn, P., Super-
fine, R., & Taylor, R. M. (1997). Sticking to the point: a
friction and adhesion model for simulated surfaces. Proceed-
ings of the Sixth Annual Symposium on Haptic Interfaces and
Virtual Environment and Teleoperator Systems, 167-171.

Cohen, J., Lin, M., Manocha, D., & Ponamgi, K. (1995).
I-COLLIDE: An interactive and exact collision detection
system for large-scaled environments. Proceedings of ACM
Interactive 3D Graphics Conference, 189-196.

Ebert, D. S., Musgrave, E. K., Peachey, D., Perlin, K., & Wor-
ley, S. (1994). Texturing and Modeling. Cambridge, MA: AP
Professional.

Fleischer, K. W., Laidlaw, D. H., Currin, B. L., & Barr, A. H.
(1995). Cellular texture generation. ACM (Proceedings of
SIGGRAPH), 239-248.

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F.
(1995). Computer Graphics: Principles and Practice. New
York: Addison-Wesley.

Fritz, J., & Barner, K. (1996). Haptic scientific visualization.
InJ. K Salisbury & M. A. Srinivasan (Eds.), Proceedings of
the First PHANToM Users Group Workshop, MIT-AI TR-
1596 and RLE TR-612.

Gottschalk, S., Lin, M., & Manocha, D. (1996). OBB-Tree: A
hierarchical structure for rapid interference detection. ACM
(Proceedings of SIGGRAPH).

Green, D. F., & Salisbury, J. K. (1997). Texture sensing and
simulation using the PHANToM: Towards remote sensing
of soil properties. Proceedings of the Second PHANToM Users
Group Workshop, 19-22.

Ho, C., Basdogan, C., & Srinivasan, M. A. (1997). Haptic
rendering: Point- and ray-based interactions. Proceedings of
the Second PHANToM Users Group Workshop.

Hubbard, P. (1995). Collision detection for interactive graph-
ics applications. IEEE Transactions on Visualization and
Computer Graphics, 1(3), 219-230.

Hoetal 491

Lin, M. (1993). Efficient collision detection for animation and
robotics. Unpublished doctoral dissertation, University of
California, Berkeley.

Mandelbrot, B. (1982). The Fractal Geometry of Nature.

W. H. Freeman.

Mark, W., Randolph, S., Finch, M., Van Verth, J., & Taylor,

R. M. (1996). Adding force feedback to graphics systems:
Issues and solutions. Computer Graphics: Proceedings of
SIGGRAPH’96, 447-452.

Massie, T. H. (1993). Initial haptic explorations with the Phan-
tom: Virtual touch through point interaction. Unpublished
master’s thesis: Massachusetts Institute of Technology.

Massie, T. H., & Salisbury, J. K. (1994). The PHANToM hap-
tic interface: A device for probing virtual objects. Proceedings
of the ASME Dynamic Systems and Control Division, 55(1),
295-301.

Max, N. L., & Becker, B. G. (1994). Bump shading for vol-
ume textures. JEEE Computer Graphics and App., 4, 18-20.

Minsky, M. D. R. (1995). Computational haptics: The sandpa-
per system for synthesizing textuve for a force-feedback display.
Unpublished doctoral dissertation, Massachusetts Institute
of Technology.

Minsky, M., Ming, O., Steele, F., Brook, F. P., & Behensky, M.
(1990). Feeling and seeing: Issues in force display. Proceed-
ings of the symposium on 3D Real-Time Interactive Graphics,
24,235-243.

Mirtich, B. (1996). Impulse-based dynamic simulation of rigid
body systems. Unpublished doctoral dissertation, University
of California, Berkeley.

Mirtich, B., Canny, J. (1995). Impulse-based simulation of
rigid bodies. Proceedings of Symposium on Intevactive 3D
Graphics.

Moore, M., & Wilhelms, J. (1988). Collision detection and
response for computer animation. ACM (Proceedings of
SIGGRAPH), 22(4), 289-298.

Morgenbesser, H. B., & Srinivasan, M. A. (1996). Force shad-
ing for haptic shape perception. Proceedings of the ASME
Dynamic Systems and Control Division, 58, 407—412.

Perlin, K. (1985). An image synthesizer. ACM SIGGRAPH,
1%X3),287-296.

Ruspini, D. C., Kolarov, K., & Khatib, O. (1996). Robust hap-
tic display of graphical environments. In J. K. Salisbury &
M. A. Srinivasan (Eds.), Proceedings of the First PHANToM
Users Group Workshop. MIT-AI TR-1596 and RLE TR-612.

. (1997). The haptic display of complex graphical envi-
ronments. ACM (Proceedings of SIGGRAPH), 345-352.
Salcudean, S. E., & Vlaar, T. D. (1994). On the emulation of
stiff walls and static friction with a magnetically levitated in-

put/output device. ASME DSC, 55(1), 303-309.

Salisbury, J. K., Brock, D., Massie, T., Swarup, N., & Zilles, C.
(1995). Haptic rendering: Programming touch interaction
with virtual objects. Proceedings of the ACM Symposinm on
Interactive 3D Graphics.

Salisbury, J. K., & Srinivasan, M. A. (1997). Phantom-based
haptic interaction with virtual objects. IEEE Computer
Graphics and Applications, 17(5).

Siira, J., & Pai, D. K. (1996). Haptic texturing—A stochastic
approach. Proceedings of the IEEE International Conference
on Robotics and Automation, 557-562.

Smith, A., Kitamura, Y., Takemura, H., & Kishino, F. (1995).
A simple and efficient method for accurate collision detec-
tion among deformable polyhedral objects in arbitrary mo-
tion. JEEE Virtual Reality Annual International Sympo-
sium, 136-145.

Srinivasan, M. A. (1995). Haptic Interfaces. In N. Durlach &
A. S. Mavor (Eds.), Virtnal Reality: Scientific and Technical
Challenges. National Academy Press. (pp. 161-187).

Srinivasan, M. A., & Basdogan, C. (1997). Haptics in virtual
environments: Taxonomy, research status, and challenges.
Computers and Graphics, 21(4), 393-404.

Turk, G. (1991). Generating textures on arbitrary surfaces us-
ing reaction-diffusion. ACM (Proceedings of SIGGRAPH),
25(4), 289-298.

Watt, A., & Watt, M. (1992). Advanced Animation and Ren-
dering Technigues. New York: Addison-Wesley.

Wijk, J. J. V. (1991). Spot noise. ACM (Proceedings of
SIGGRAPH), 25(4), 309-318.

Witkin, A., & Kass, M. (1991). Reaction-diffusion textures.
ACM (Proceedings of SIGGRAPH), 25(4), 299-308.

Worley, S. (1996). A cellular texture basis function. ACM
(Proceedings of SIGGRAPH), 291-294.

Zilles, C. B., & Salisbury, J. K. (1995). A constraint-based
god-object method for haptic display. JEEE International
Conference on Intelligent Robots and System, Human Robot
Interaction, and Co-operative Robots, IROS, 3, 146~-151.

