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Abstract

Human and robot tactile sensing can be accomplished by arrays
of mechanosensors embedded in a deformable medium. When an
object comes in contact with the surface of the medium, informa-
tion about the shape of the medium’s surface and the force distri-
bution within the region of contact on the surface is available in
the stress/strain states at the sensor locations within the medium.
The mechanosensors transduce these signals, and the problem for
the central processor is to reliably and efficiently infer the contact
state and the object properties on the surface from the sensor sig-
nals. Inthis paper, a frequency-domain approach is used to solve the
problem of encoding and decoding mechanosensory information. A
solution to the encoding problem is given with the medium modeled
as a general three-dimensional infinite half-space composed of a
linear elastic material and subjected to three-dimensional loads. It
is shown that considerations of symmetry and bandwidth of sensor
response uniquely determine the optimal stress/strain components
the sensors need to transduce. It is further shown how the decoding
leads to an ill-posed problem, and how that problem can be efficiently
solved in the frequency domain using a regularized inverse such as
the multivariate Wiener inverse. The results are then applied to the
encoding and decoding of contact with a shaped object. It is shown
that the solution can also be used in pseudodynamic problems, such
as the estimation of the onset of slip.

1. Introduction

Manual exploration and manipulation of objects in an envi-
ronment is important to both humans and robots. Human
performance of these tasks is enabled by the haptic system,
consisting of tactile and kinesthetic sensory systems together
with a motor-control system. Similar classification is appli-
cable to the sensory and motor systems of robots. A detailed
and quantitative understanding of the underlying dynamics,
information flow, and control strategies will benefit investiga-
tions of both human haptics and the development of machine
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haptics. It is especially valuable in the development of haptic
interfaces through which humans can interact manually with
teleoperated systems or computer-generated virtual environ-
ments (Srinivasan 1995). Although the principles of opera-
tion for human-made devices are quite different from those
of humans, the constraints on the performance of these haptic
tasks, such as the laws of physics governing the mechanics of
contact and the presence of friction and gravity, are the same
for both. In addition, the type of tactual sensory information,
their processing, and the computation of the required con-
trol action are sufficiently similar for the two systems that the
common aspects of information processing can be function-
ally separated from the hardware implementations. Therefore
a computational theory of haptics that investigates what kind
of information is necessary, and how it has to be processed to
successfully complete a desired haptic task can be common
to humans and robotic systems.

It has been recognized for some time that robots with dex-
trous hands need “tactile sense” to successfully explore and
manipulate objects in their environment. Reviews of the var-
ious tactile sensor designs have been given by several authors
(see for example Nicholls 1992; Shimoga 1992; Jayawant
1989). Because of the natural constraints imposed by this
mode of sensing, the engineering designs have had to follow
nature in overall configuration. By definition, tactile sensing
is achieved through direct contact with objects, and there-
fore a “skin” is necessary to protect the sensors from phys-
ical damage. The requirements that the skin should be soft
comes from the needs to have (1) regions of contact within
which skin surface conforms to the object surface (instead of
point or line contact that occurs between two rigid objects),
and (2) significant deformation within the medium so that
the sensors are activated and have enough resolution. If the
substrate material on which the sensors and the skin rest is
also soft, then, in addition to the above, better prehension
stability can be achieved. The facts that a point contact has
no torsional resistance and its stability is highly sensitive to
local aberrations imply that compliant skin gives better pre-
hension. Thus, although robotic tactile sensors themselves
might differ in their operation, depending upon whether they
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respond to changes in conductance, capacitance, contact area,
light intensity, etc., within each sensing cell caused by local
mechanical distortions, the overall configuration of all the de-
signs is that of mechano-sensitive transducers embedded in a
deformable medium.

Two stages in tactual information processing, encoding
and decoding, make up the identification problem, which is
so called because it involves the determination of the state of
the object and its relationship to the tactnal sensory system.
The system discussed here differs in some ways from tradi-
tional dynamic systems. The most prominent difference is
that it has both spatial and temporal variables, whereas tradi-
tional lumped parameter systems only have temporal ones. In
both natural and human-made tactile systems, the encoding
process is the transduction of the mechanical stimulus into
electrical signals that contain, in a coded form, information
about the stimulus features. The inverse problem, i.e., the
decoding process or the calculation of the surface shape or
surface tractions from the transduced signals, is in many re-
spects significantly more difficult. The encoding is essentially
a low-pass filtering process that indicates that the decoding
will be ill-posed in the sense that the higher-frequency com-
ponents of the signals will be prone to noise contamination
and special methods must be applied for successful decoding.

Several papers can be found in the robotics literature on
the mechanistic modeling, encoding, and decoding of surface
conditions from subsurface measurements using tactile sen-
sors. The earlier papers dealt primarily with the mechanistic
model and only the encoding. The problem is approached
by Phillips and Johnson (1981) from a physiological point of
view, and by Fearing and Hollerbach (1984) from a robotic
point of view. Both papers use the plane-strain assumption,
and give solutions to the two-dimensional (2-D) encoding
problem. The decoding problem is first addressed by Srini-
vasan (1988) and Pati et al. (1988), both of which solve only
the 2-D plane-strain case. Srinivasan (1988) uses a frequency-
domain approach, whereas a neural network approach is used
by Pati and colleagues (1988). The plane-strain assumption
is dropped by Cameron, Daniel, and Durrant-Whyte (1988),
but the analysis is limited to the properties of a specific photo-
elastic sensor. In work by Fearing (1990), again plane stress
or plane strain is assumed, and the effects of finite thickness
as well as the stability of the grasp are investigated. Rossi and
coworkers (1991) investigated the mathematics of the decod-
ing problem using matrix-regularizing operators, where the
loading is assumed to be axisymmetric. The combined re-
sults of the above papers are detailed by Fearing (1992); this
work is the most thorough treatment so far on the infinite half-
space and analytical solutions of the encoding and decoding
problems. Fearing (1992) further gives the three-dimensional
(3-D) half-space solution only to a normal point load in the
appendix. Additionally, finite element analysis is used by
Speeter (1992), where the effects of shear loads on subsur-
face strain and stress are demonstrated graphically, and also

by Ellis and Qin (1994) in an investigation of the differentia-
tion of shapes and the inherent difficulties that arise because of
the blurring effect of the skin. In work by Howe and Cutkosky
{(1993), the encoding and decoding of a siress-rate sensor are
investigated and a scalar Wiener inverse is suggested for the
decoding. Nicolson and Fearing (1993) give the 2-D plane-
strain solution for a cylindrical finger. Shimojo (1997) uses
the finite-element method to investigate the mechanical filter-
ing effects of an elastic layer over sensors placed on an elastic
foundation, with the conclusion that even the thinnest elastic
layer causes considerable spatial low-pass filtering of stress
distribution at the sensor location.

In summary, none of the above papers treats either the
encoding or the decoding problem fully. Until now, all the re-
sults published on the reconstruction of general surface loads
and profiles from subsurface tactile signals do not solve the
full 3-D problem. The effects and interactions of shear loads
and the selection of appropriate sensor signals have not been
investigated. In addition, neither has the decoding problem
been fully addressed, or has the multivariate Wiener inverse
been applied. Inthis paper, we address mainly the mechanistic
modeling, encoding, and decoding problems. The contribu-
tions of this paper can be itemized as follows:

* A complete solution to the 3-D half-space problem is
given for arbitrary 3-D static loading conditions and any
linearly elastic material, instead of the 2-D solutions
previously used. The solution also applies to pseudo-
dynamic problems that can be described as a sequence
of elastostatic problems (such as the estimation of the
onset of slip).

* The solution is formulated using transfer-function ma-
trices in the domain of spatial frequency, which allows
us to look at the qualitative properties and general be-
havior of the solution, irrespective of particular cases
of the loading or object shape. It also enables efficient
numerical implementation based on the theory of linear
signal processing.

» Symmetry and signal-bandwidth arguments are in-
voked to select the optimal transducing signals or types
of sensors. For decoding, we can then apply the signal-
processing and regularization theory in a manner simi-
lar to what has been done in the development of com-
putational theory of vision.

» Numerically stable, multivariate, regularizing solution
methods for the decoding problem are delineated. The
ill-posedness of the decoding process is analyzed, and
we show how the extensively developed methods of
image restoration can be applied to avoid the problems
associated with the ill-posedness.

In Section 2, we formulate and solve the 3-D half-space
elastic model, which serves as a description of the encoding
process. For the sake of clarity, the mathematical expressions
are detailed in the appendix. In Section 3, we analyze the
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decoding problem, first as an ideal problem without any real-
world effects such as noise, following which we incorporate
the effects of sampling and random additive noise into the
solution. This constitutes an algorithm for the decoding pro-
cess. In Section 4, we give example numerical simulations of
the methods proposed in Section 3. Conclusions are given in
Section 5.

2. The Encoding Problem

From a theoretical viewpoint, tactile-sensor response to any
given stimulus can be predicted if we have the following:

1. a mechanistic model of the deformable medium, which
can be used to calculate reliably the stresses and strains
at each point in the medium for a given mechanical
stimulus; and

2. amodel of the sensor that provides the relationship be-
tween the relevant stimulus, i.e., a particular combina-
tion of stresses and strains in the local neighborhood of
a sensor that it is responsive to, and the sensor response.

For example, an appropriate mechanistic model of the human
skin and the soft tissues underneath enables us to investigate
one of the important questions in cutaneous neurophysiology:
identifying the relevant stimulus that causes each receptor
type to respond (Phillips and Johnson 1981; Srinivasan and
Dandekar 1996).

2.1. Mechanistic Analysis

In the robotic tactile-sensing literature, contact-analysis prob-
lems are frequently simplified by posing them as 2-D plane-
strain problems in the elastic half-space (Sneddon 1951; Glad-
well 1980; Johnson 1985). The surface load or profile is then
assumed not to change along one dimension on the planar sur-
face; for example, as in the case of a line load. Almost all the
results in the literature on the analysis of tactile sensing have
made this assumption. Clearly, this is a serious limitation.
In this section, we give the more general solution when 3-D
loads are arbitrarily distributed over the contact region.

The assumption that the problem can be posed as a contact
problem in the semi-infinite half-space still remains, mainly
for the sake of analytical tractability. We can, however, par-
tially justify that assumption, based on numerical solutions
obtained for finite models (Dandekar 1995; Srinivasan and
Dandekar 1996), which show that the effects of finite ex-
tent are minimal when the contact region is small relative to
the surface area of the medium. The semi-infinite half-space
solution is a good approximation in such cases, because the
stress-strain response to a load decreases rapidly with distance
from the load.

The problem is set up so that the boundary sur-
face coincides with the xy-plane and the positive z-axis
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points into the medium (see Fig. 1). The material is as-
sumed to be linearly elastic and homogeneous. It is
also assumed to extend to infinity in both negative and
positive x-, y-directions and in the positive z-direction.
The surface load is described by the traction-vector field

FGy) = [fex, ), f5(6, ), fo(x, )]" and the surface-
displacement field as uo(x, y) = [ux(x, y, 0), uy(x, »,0),

u(x,y, 0)]T. In our formulation, the boundary conditions
can be forces, displacements, or mixed, i.e., when any three
elements from both f and ug are given. We intend to present
the solution in the space of spatial frequencies and use transfer
functions to simplify solutions and gain further insight.

2.2. Transfer-Function Matrices (TFM)

Many equivalent routes to the solution of the encoding prob-
lem exist, but the simplest and most direct way for our pur-
poses is to transform the fundamental differential equations of
equilibrium and the stress-strain relationship equations (Gen-
eralized Hooke’s law) using the Fourier transform over (x, y)-
space. Examples of this approach can be seen in the works
of Eason, Fulton, and Sneddon (Eason, Fulton, and Sneddon
1956; Sneddon 1975). The derivation of the transfer-function
matrix form of the solution is given in the appendix. Sim-
ilar to what is done in control theory, we employ here the
concept of a transfer-function matrix (TEM). The transfer-
function matrices we give here have the Fourier transform of
the components of either f(x, y) or uo(x, y) as the inputs,
and any displacements, strains, or stresses in the medium
as the outputs. Each entry of the TFM would then corre-
spond to the contribution of a particular input component to
the corresponding output component. For example the entry
in the TFM for the z-displacement resulting from the x-load,
or uy (x, y, z), we would write

ﬁ;(wx» Wy, z) = Tu’z‘f(wx, Wy, Z)f-x(w)h wy)

to obtain the Fourier transform #7 (wy, @y, z) of u} (x, y, z)
from the transfer function 7yx f(wx, wy, z) and the Fourier
transform f (wy, wy) of the surface-shear load fi(x,y).
Here, w, and @, correspond to spatial frequencies in the x-
and y-directions, respectively. Then we can write

i=Tyf, &=Tyf, G=Tof. pn=Tpsf
i = Tyythg, &= Teug’}{), o= Touptto, Pn = Tpuuglo,
(1

where the subscript f indicates that surface tractions are in-
puts and the subscript ug indicates that surface displacements
are inputs. As an example, we give here Ty, i.e., the case
when the surface displacements (ug) are the inputs and the
subsurface strains (¢) are outputs (the other TFMs are given
in the appendix):
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where 2 = (wﬁ + a)g) , ) is the shear modulus, and v is
the Poisson ratio. For mixed cases, TFMs can also be easily

constructed by choosing appropriate elements from the TFMs
above.

2.3. Mixed Boundary-Value Problems

There are four distinct cases in the formulation of the TFMs
for the half-space problem, which can be described as follows:

1. only displacement inputs or traction inputs are specified

over the entire surface;

displacement and traction inputs are mixed, but the

same inputs are specified over the entire surface;

3. displacement and traction inputs are mixed, but dif-
ferent combinations of inputs are specified within and
outside a known contact region; and

. the same type of inputs as in point 3, but the contact
region is unknown.

2.

The statements in eq. (1) represent the solution for the en-
coding problem in case 1, because given f(x, ¥), or up(x, y)
over the entire surface, we can predict u(x, y, z), e(x, y, 2),
o(x,y,2),and p,(x, y, z). If therelevant stimulus, i.e., a par-
ticular combination of stresses and strains in the local neigh-
borhood of the sensor to which it is responsive, is known, we
can predict the sensor response as well. For example, if the
sensor response is linearly related to the strain &,,, then it is
the relevant stimulus for that sensor. On the other hand, if the
relevant stimulus needs to be identified, we can use eq. (1) to
generate hypotheses that can be tested against the empirically
measured sensor response, as is done by Phillips and Johnson
(1981) and Srinivasan and Dandekar (1996).

For case 2, the solution can be computed using the un-
derlying TFM, which can be found as follows: expressing
an arbitrary input vector ¢ in IR® as a linear combination of
displacements uq and tractions f, we get
o7

¢O f

for (@ - 42 - 20%2)
—%a)xwy(l —2z82)

~1 (G- +02(1-292)  jQu:1 -2 + )
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Quwywyz

Qw1 —2v) + Q2)

where F has rank 3. Using the TFM T, s between the input
f and output ug, we get

Ja— A p—
o) FTy rf = Toor [,

- | ™.

Since both F and Td,m £ have rank 3, it follows that Ty, s can

be inverted to obtain T'f4,. Substituting f = Trpoo in egs.
(14)~(18) in the appendix, we can solve this type of mixed
boundary-value problem. Alternately, the input u#g can be
used instead of f by employing the TEMS in egs. (19)—(23).

In cases 3 and 4, if analytical solutions are available for
the subsurface variables, then a similar procedure as in case
2 can be carried out to select the appropriate TFMs that cor-
respond to the specified inputs and desired outputs. In the
absence of analytical solutions, numerical procedures need to
be followed. For example, in case 3, assume that either the
contact region or total load is known and that at every point
a collection of three independent tractions or displacements
is known (and hence the remaining three are unknown). The
set of possible surface tractions and displacements can then
be divided into two subsets, ¢o, and ¢g,, three components
in each. The surface of the medium can be divided, similarly,
into two mutually exclusive regions A and A3, such that in
A1, ¢o, is known but ¢, is unknown, whereas in Ajp, the
converse is true. Also, using the TFMs Tuopo and Trg,, we
can obtain the TFMs T¢O] o, and T¢02¢0] . We can then apply
the following algorithm:

s
where T(250 7

1. At every point on the surface, estimate the unknown
parts (using perhaps a known analytical solution that is
close to the unknown numerical solution).

Using Ty, ¢o, together with the initial guess for ¢y,
(which is known in Aj and estimated in A;), obtain a
new estimate for ¢o, in A;. Similarly, obtain a new
estimate for ¢y, in Aj.

3. Iterate the estimated inputs ¢, in A3 and ¢p, in A; by

enforcing the known inputs as in step 2.

2)
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k4

Fig. 1. The semi-infinite half-space with surface tractions and
subsurface sensors. The x- and y-dimensions extend to infin-
ity in both negative and positive directions. The z-dimension
extends from O to positive infinity. The tractions are dis-
tributed over the contact area, each point being subjected to

three-dimensional loading, f(x, y) = [ feo fys fZ]T.

If the contact region is also unknown, which corresponds
to case 4 above, an iterative estimation procedure must be
used for the contact region as well, which can be carried out
employing information on object shape and total load. In
Section 4, an illustrative example of this case is considered
and the above algorithm is applied. While we do not carry
out a formal analysis of this algorithm, linearity and Parseval’s
theorem (total energy in frequency and spatial space is equal)
can be called upon to establish the conditions under which
successive iterations (as in step 3) give improved solutions.

3. The Decoding Problem

Tactile information is obtained with mechanosensors embed-
ded in a deformable medium that is in contact with a shaped
object. Mechanosensors, embedded within the medium, can
at best provide information on skin-surface shape and surface-
traction distribution. From this information, contact region,
shape of the object, and contact state need to be inferred.
The problem at hand is therefore the decoding; i.e., recon-
struction of the surface shape of the medium, the tractions on
the surface as well as the region of contact from subsurface
mechanosensory information,

The approach we have chosen is to represent the solution
in the spatial frequency domain, in terms of transfer functions
as in eq. (1). Equivalently, using superposition of the point-
load solution, the solutions can also be presented as convolu-
tion integrals. However, the transfer-function approach gives
solutions whose properties are more transparent, and some
important statements can be made regarding their qualitative
properties (such as the symmetry and bandwidth properties
of subsurface stress or strain components), irrespective of the
exact form of the loading. This approach also enables the use
of efficient tools of linear signal processing, such as the fast
Fourier transform. This section is organized as follows. In
Section 3.1, we discuss the constraints that the task of tactile
identification puts on the selection and the number of neces-
sary sensor signals, and furthermore identify possible candi-
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dates of sensor-signal combinations. In Section 3.2, we use
symmetry arguments to analyze the TFMs of the previously
identified candidates to find an optimal combination. Finally,
in Section 3.3, we show how an optimal multivariate Wiener
inverse can be used to reconstruct the surface signals from
measurements of the sensor signal in the presence of noise
and sampling errors.

3.1. Sensory Information Necessary for Reconstruction

The most obvious signals to reconstruct are the deformed
shape of the surface of the medium and the spatial distribu-
tion of surface tractions. Discontinuities in slope or curvature
of surface shape do not reliably indicate contact borders, as
an object surface within the contact region could have sim-
ilar discontinuities and therefore be mistakenly identified as
borders of the contact region. Each of the regions where the
surface tractions (e.g., normal pressure) are nonzero indicates
the region of contact with the object. Within these regions,
the object shape is the same as the shape of the deformed
medium surface. In addition, the surface-traction distribution
can directly give valuable information on the stability of grasp
and the type of contact, be it static or vibrating.

Some interesting properties of the TFMs can be obtained
when dynamic systems theory is applied to them. In what fol-
lows, we assume that the sensors pick up a strain component
or mean normal stress, and further, that the components of the
strain are expressed in the global coordinate system (x, y, z).
If the medium is incompressible, uniform normal pressure on
its surface does not cause any strains within. Therefore, mea-
surements of strains only are not sufficient to fully reconstruct
surface-force distributions, as the mean normal stress compo-
nent will not be detectable in the strains for incompressible
materials. This is the main reason for the use of the mean
normal stress as a variable that needs to be sensed.

If no shear loads are present, or if the relationship between
normal and shear loads is known, only one component of
strain needs to be sensed. However, if shear independent of
the normal load is present, the more-general TFM formulation
must be employed, as the surface tractions must be obtained
by the inversion of some of the statements in egs. (15) and
(17) in the appendix. What and how many components of
the strain tensor are needed depend on the assumptions we
make on the loading conditions. This can be detailed in the
following cases.

1. No shear loading.In this case, the normal pressure dis-
tribution and surface displacements need to be recon-
structed. Sensing of any strain or the mean normal pres-
sure is generally sufficient, but the need for rotational
symmetry about the z-axis makes either p, or &;; the
natural choice. Using p, will enable the calculation of
the uniform pressure component of the total load, which
no combination of strains can provide if v = 0.5 (i.e.,
incompressible material). However, the combination of
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Pn and &,; can also be used to obtain increased spatial
frequency bandwidth (see Section 3.2.2), in addition to
obtaining the full load distribution.

2. Relationship between normal loads and shear loads is
fully or partially known. This is the case, for example,
if the object is sliding in an unknown direction over the
surface under Coulomb friction conditions, or if the re-
lationship between normal and shear loads is unknown
but the direction of the shear load is known. Then any
two subsurface stress and strain components need to be
sensed to fully reconstruct all three surface-traction or
displacement components, and a natural choice would
again be p, and &,; as above,

3. All tractions unknown. All three traction components
and surface displacements need to be reconstructed.
Considering only combinations symmetric in (x, y),
the following combinations become candidates:

() (&xy, &xx, Eyy)s
(b) (&xx, &yy» €22)s
(©) (€225 €xz5 €y2)>
(@ (&xy, &xzs Eyz)s
(e) (pa, &2z, exy):
(£) pn, Exxs Eyys and
(&) (Pn, &xz, &yz)-

We will show below how we can make an optimal
choice among these component sets.

Case 3 is the most general one, and it indicates that any
sensor population that is suitable for reconstructing arbitrary
loading conditions must measure at least three independent
stress-strain components (out of a total of six). More com-
ponents could be used to get redundant measurements, and
hence more-reliable estimates, but here we will only look at
the minimal set.

3.2. Analysis of TFM Properties

We now try to use the properties of the TFM to identify the
sensor combination that is most suitable for tactile sensing. In
particular, we look at the rank of the TFM and its bandwidth.

3.2.1. Rank of the TFM

Since we intend to invert the TFM, we need to consider its
rank, which is a key property and has to be full for an inver-
sion to be possible. If the TFM loses rank, information is
lost, as the output will span fewer dimensions than the input.
The conditions under which the TFM loses rank are closely
related to zero properties of dynamic systems, just as the con-
ditions under which the TFM becomes infinite are related to
the poles. The TEMs in our case are, however, always finite,
and therefore do not possess any polelike properties, which is
to be expected from a linear mechanical system in stable equi-
librium. The TFM loses rank when its determinant becomes

zero. When the traction vector f is the input, the determi-
nants of the TFM candidates (see eq. (15) in the appendix)
detailed in Section 3.1 are

det(Teyy ere,) = O @)
det(Te,, o00) = —(1—2u)‘°—;‘§—’e-29 )
det(Te,, oz.8y.) —(1 —2v)e—t8 (©)
det(Ts,, orr00) = —(1—21;)“’—:2‘;2529 @
2 2
det(Tp, 6,0,60,) = izi 3: :z jx szy e %% (e)
det(Tpy erreyy) = —g——c‘glﬂeﬂ“ ()
BTy o) = ot e, ®

We see that the first one is always rank deficient. If the
medium is incompressible, i.e., if 1 — 2y == 0, then the next
three TFMs lose rank. As discussed in Section 3.1, the mean
normal stress, pp, must be included among the sensor sig-
nals in the case of an incompressible material. Otherwise, the
component of the surface load that contributes to the mean
normal stress cannot be reconstructed. A special case is a
solid subjected to uniform pressure. No strains will be de-
tected inside the solid, although the pressure can be arbitrary.
We also note that the TFM loses rank for candidate (e) when
@, = *wy and for candidate (f) when w; = 0 or wy = 0.
That the TFM loses rank for certain directions in the (wx, wy)
plane means that the inputs cannot be reconstructed along
those same lines. In the case of candidate (f), this means that
the cumulative load distribution in either the x- or y-direction
cannot be reconstructed. For example, if w, = 0, in fre-
quency space we have the traction vector f(w,, 0) = g{wx),
and g(x) = f_"'of f(x, y)dy, which is the cumulative load
distribution along x. Therefore, since the TFM for candidate
(f) is rank deficient for w, = 0, the component containing
information on the cumulative distribution of the input along
x will be lost in the encoding. The same arguments apply
to candidate (e), with the coordinate system rotated by £45°
about the z-axis. Candidate (g) is the only one that does not
lose rank, and therefore has the desirable combination of pj,
and strains that the sensors need to transduce for decoding.

REMARK 1. The comments above, which are made in the
context of the traction vector f being the input, are also valid
when the displacement vector ug or any combination ¢g of
tractions and displacements are the inputs. This is because
when g is the input, since the TFM that relates up and f (eq.
(18) in the appendix) has the determinant

2(1+v)3E3 1
3—4y Q3

it does not alter the rank properties of each of the TFMs of
candidates (a)—(g) above. Similarly, when ¢ is the input,

det Ty 5 = 3)
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since Trg, is invertible (see Section 2.3), the rank properties
of these candidates still remain unaltered.

3.2.2. Bandwidth of Spatial Frequency

A frequently used property of dynamic systems is the band-
width of the TEM, which measures how the attenuation of
each signal in the medium depends on frequency. High band-
width would mean that reconstruction is possible with finer
details, and is therefore desirable. However, since the fre-
quency is 2-D, the bandwidth will also depend on orientation
inthe (x, y)-plane, which in turn can be used to exclude sensor
combinations that lack rotational symmetry about the z-axis.
To compare the bandwidth of the various combinations (a)-
(g) listed above, we look at the power spectrum of the TFMs,
a line at a time. That is, the power spectrum of each sensor
signal is the norm of the corresponding line vector in the TFM.
For example,
Pere = [Tz, Ty, Tet, | 1P

The power spectrum for the possible sensory signals can
be seen in Figures 2-7. The figures show the power spec-
trum as density plots with darker and lighter areas indicating
frequencies where attenuation is low and high, respectively.
Also shown along the border of the density plot are pro-
jected profiles of the power spectrum along the lines wy = 0,
wy = 0, and w, = wy. Figures 2-7 show the power spec-
trum respectively for pn, Exx, €225 Exy» €x2, and candidate (g)
(Ppy + Pey, + Psy,). We note that the power spectrums for
Eyy OF &y, are obtained from those of &yy or &y, rotated by
90°.

The two most important features of the spectrums are their
frequency bandwidth and rotational symmetry. If the sensor
responses cannot be combined to form a rotationally symmet-
ric spectrum, the sensor response would depend on stimulus
orientation in the xy-plane, which is undesirable because of
different proportions of signal to noise. We note that &,, has
a shape similar to £,, but higher bandwidth, while the other
strains have orientation-dependent bandwidth. This excludes
candidate (e), since for #,, (Fig. 5) frequencies along +45°
are attenuated. Candidate (f) is also excluded, because both
&xx and &,y attenuate frequencies along 0 and 90°, and us-
ing both will therefore not produce rotational symmetry. It is
worth noting that the directions of attenuation coincide with
the conditions under which the TFM loses rank (see Section
3.2.1). Candidate (g) is therefore the only one remaining, and
it can provide rotational symmetry, as seen in Figure 7. The
importance of having full rank and bandwidth in ail directions
becomes apparent when one considers that loss of rank means
that infinitely many load combinations produce identical sen-
sor responses, and hence make inversion impossible for those
cases, and lower bandwidth in any one direction means that
less information on the spatial features characterizing that di-
mension of the object are observable by the sensors.
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Pr

Fig. 2. The power spectrum of the mean normal stress &p,,.
We observe that it is rotationally symmetric with a smaller
bandwidth than %, (shown in Fig. 4).

€2z

Fig. 3. The power spectrum of the x-normal strain %, . This
power spectrum is not rotationally symmetric, as it behaves
like £, in the w, = %wy-directions, but as P, in the wy-
direction (along wy = 0.)
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Fig. 4. The power spectrum of the z-normal strain & ,. This

one is also rotationally symmetric, as &, in Figure 2, but it
has higher bandwidth.

Fig. 5. The power spectrum of the xy-shear strain %, . It
is not rotationally symmetric, and it differs from the other
spectrums in that it has a sharp minimum at the origin.
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Fig. 6. The power spectrum of the xz-shear strain &%, ,. This
power spectrum behaves like #,, in the w,-direction, but as
Py, in the wy-direction, and it is therefore not rotationally
symmetric. The P, power spectrum can be obtained from
this one by a permutation of (x, y) or a rotation of the axis by
+90°.

(Prs€yr€y )

Fig. 7. The power spectrum of the sensor signals in candidate
.(g); i.e.', PP, £x2, 242) = :P,,,.I +Pe,, + Pe,,. We observe that it
is rotationally symmetric, since the &£,,- and &,,-components
complement each other and p, is rotationally symmetric.
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The conclusion is, therefore, that given the assumption
that we are using Cartesian strain sensors, the only combi-
nation that works for incompressible materials and possesses
symmetry is (P, €xz, &y7), and the TFM for that selection is
(refer to the appendix)

1 —z
Tor = A+ v)e™
EQ
— (@ — w?z) WxWyZ Qw7
WyWyZ - (Q - wiz) JQuwyz

where s stands for a normalized sensor signal, s =
T
3
I:Z_E-p”’ Exz» Syz:‘ .

REMARK 2. Thesensor combination (6;;, 0%z, 0y;) is equiv-
alent to (pn, &xz, £yz), but the latter combination can be con-
sidered to be unique and optimal because in sensors, strains are
directly measured and stresses are inferred from the strains.
Mean normal stress, p,, is a better variable to measure than
volumetric strain, since the latter is always zero for incom-
pressible materials. As long as we are sensing stresses or
strains, the range of spatial frequency sensed through each
component is of the same order. But only some of the com-
ponents and combinations are rotationally symmetric about
the z-axis.

3.2.3. The Structure of the Sensor TFM

Analyzing the structure of the TFM in eq. (4), we observe
that the e~ factor, which is common to all the terms, ex-
presses how the signals get increasingly low-pass filtered or
blurred with depth. It is a consequence of the model includ-
ing the resistance of the medium to shear, and is therefore
necessary if the sensors are to have a subsurface location. We
further observe that there are two basic variants of transfer
functions in the sensor transfer-function matrix, which we
will call T1 and T2. While T1 is characterized by its norm
behaving like e~$% (for example Ty, f, = e~$%2), T2 is char-
acterized by its norm behaving like |w;}ze %, i = x, y
(e-g, |Tero sy | = x| ze™%2) They differ in that the T1 trans-
fer function has low-pass characteristics, but the T2 transfer
function has band-pass characteristics. In the spatial domain,
this means that the response of the T1 terms is spread over
a larger area, since a predominantly low-frequency content
indicates slow variations in the spatial domain. On the other
hand, the response of the T2 terms is more localized, and they
respond better to sudden changes in the loading since they

have higher bandwidth. Terms like j%e‘gz, i =x, y, have
Wiz e_Qz

the same bandwidth as the T1, but terms like

)

i, k =x, yare of type T2.
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The TEM is symmetric with respect to x and y, since the
half-space model is identical for x and y. Loocking at the
TFM linewise, we see that line 1 (p,, terms) contains only T1
terms, but lines 2 and 3 (gx, and &y, terms) contain mostly
T2 terms. The T1 terms appear in the subdiagonal, in 7, r,
and T3, ry. These T1 terms serve their purpose, as they are
the reason that the matrix is nonsingular for = 0. Looking
at the TFM columnwise, and column 3 first, we see that the
pn term in line 1 is type T1, and the &y, and ¢y, terms are
type T2, and we observe that they are proportional to the x-
and y-partial derivatives of the p, term (in addition to being
multiplied by z). The same is true for the other two columns,
except for the previously mentioned additional T1 terms on
the subdiagonal.

In summary, the TEM can be interpreted as the p, terms
measuring the surface force as directly as possible within the
constraints posed by the subsurface location, while the other
two sensor signals complement the p, signal by measuring
its x- and y-spatial derivatives.

3.3. The Decoding Solution
3.3.1. The Ideal Case

Ideally, the solution to the problem would be obtained by
simply dividing the sensor output by the transfer function in
the frequency domain; i.e.,
$owx, Wy, 0 = T_I(a)x, Wy, 2)s(Wx, Wy, 2),

where ¢p is the desired surface signal that needs to be cal-
culated during the decoding process (which can be tractions,
displacements, or a combination of the two), T (wy, wy, 2) is
the transfer function, and s is the measured signal. As can
be seen from the TFM expressions, the transfer function is
a low-pass filter where the high-frequency response goes ex-
ponentially to zero as 2 tends to oo. Therefore, the inverted
transfer function will become arbitrarily large for high fre-
quencies. This is very impractical, and will lead to serious
errors in real circumstances. To avoid this problem, we in-
stead use regularized solutions, which is a common practice
in treating ill-posed problems such as this one. Most regu-
larization problems are formulated as scalar problems; here,
however, we need to use multivariate regularization, which
happens to be used in specialized problems such as the digi-

tal restoration of multichannel images (Galatsanos and Chin
1989; Galatsanos et al. 1991).

3.3.2. The Real Case

In addition to the features of the ideal problem, the real prob-
lem involves the unfavorable effects of noise and spatial sam-
pling. Both these effects can be effectively minimized using
regularizing agents in the solution, as shown by Tikhonov and
Arsenin (1977). One possible way of solving the resulting in-
tegral equations is to discretize the integral and put it in the
form of a system of linear equations (Rossi et al, 1991; Pati



140 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

et al. 1988). A more intuitive way is to construct a regulariz-
ing operator in the frequency domain using transfer functions
as follows. The solution is obtained as in the ideal case, ex-
cept for the multiplication factor ¢ (wy, wy, z, ), where « is
a regularizing parameter, i.e.,

$o(@x, 0y) = Y(wx, 0y, 2, T 0y, 0y, 2)
S‘(a)Xv a)y, Z)$

where ¢y is an estimate of the surface signal vector (inputs)
and 5 is the stimuli (output) vector. One possible family of
regularizing operators that can be constructed are weighted-
norm filters (Tikhonov and Arsenin 1977; Karayiannis and
Venetsanopoulos 1990), which are of the form

Vialwg, 0y, 2,0) = [T°T +eH]| ™ T*T,

where H (wy, wy, z) is a weighting function to be determined
that will depend on the problem at hand, the sampling interval,
and the noise characteristics. The solution is then
$o = [T*T+aH] ' T*.

It is.shown by Tikhonov and Aresnin (1977) and in further
detail by Karayiannis and Venetsanopoulos (1990) that in the
case of scalar signals, this regularizing agent corresponds to
the minimization of a functional. This generalizes readily in
the vector case to the functional

Mqldo, s, ol = [%) [%0, [T¢o — 51" [T¢o — s1dwydwy
+oa [20 [20, dhlwx, wy)
H(wy, 0y, 2)P0(0yx, wy)dwydw,.

This means that in the solution, the frequencies of the solution
are weighted by the matrix H.

It is also shown by Tikhonov and Aresnin (1977) and
Karayiannis and Venetsanopoulos (1990) how the selection
of the parameter « and the matrix H can be optimized fur-
ther. If we assume additive sensor noise which is uncorrelated
with the solution, x, y and load, i.e., s = st + sy, then H and
o can be specified such that the expected value of the squared
difference is minimized; i.e.,

E[18§17] where @ = G -4,

where ¢ is the uncontaminated signal. The solution to this
problem is the multivariate Wiener inverse used in problems
that appear in digital restoration of multichannel images. It
is shown by Galatsanos and colleagues (Galatsanos and Chin
1989; Galatsanos et al. 1991) that in the multivariate case it is

| .
H(wx, 0y, 2) = —P; How, wy) Palws, wy, 2),

where Ps(wy, wy, z) is the power-spectrum matrix of the so-
lution, and P, (wx, @y) is the power-spectrum matrix of the

sensor noise. The multivariate Wiener inverse then finally
becomes

¢ = [PT*T + P BT (5)

The need for the power spectrum of the solution indicates
that the solution is not in a closed form. This problem can be
circumvented in several ways. First, the power spectrum can
be put equal to g7, where I is the identity matrix and g is a
constant, indicating that nothing is known about the solution
a priori, and the solution is therefore assumed to be white
noise. Second, the solution can be iterated. Third, all prior
information about the solution that can be included in a power
spectrum can be used there. For example, suppose Coulomb’s
law of friction applies at all points at the contact interface, and
the coefficient of friction is known. The solution can then be
constrained to satisfy Coulomb’s law by explicitly expressing
the correlation between the normal and the tangential tractions
in the components of the P; matrix. Let us further assume
that it is known that the object is sliding over the surface but
the direction of motion in the (x, y)-plane is unknown; then
the power-spectrum matrix would be of the form

#r 0 ug
Po=1 0 p,"} wr | Py,
my o pp o1

where Py, is the power spectrum of fz, and u ¢ is the friction
coefficient between the object and the surface. Using this P
in eq. (5) will constrain the solution to satisfy Coulomb’s law;

Le, fr =prfoand fy = pysfr.

REMARK 3. The linear filter presented here is based on the
assumption that the noise properties are shift-invariant and
uncorrelated with the input signal. Also, its optimality is
achieved with respect to a Euclidean norm functional. The
shift-invariance assumption comes naturally with our formu-
lation of the encoding problem as a contact problem on the ho-
mogeneous semi-infinite half-space. However, if needed, the
Wiener filter can be extended to correctly treat cases when the
input and the noise are correlated (Brown and Hwang 1992).
Finally, different cost functionals can be prescribed, such as
absolute value, p-norm, and maximum entropy (Castleman
1979). These filters should be considered when the Wiener
filter has proven inadequate. The details of their construction
is hence considered to be a matter of implementation, and
beyond the scope of this paper.

4. Identification of Shape and the Onset of Slip:
An Illustrative Example

In this section, we present an example that implements the
theory discussed above which brings together contact me-
chanics and tactile sensing. The simulations have two main
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objectives: shape identification and detection of the slip onset.
In both cases, we will (1) show the necessity and usefulness
of the full 3-D formulation presented here, especially in the
context of a pseudodynamic problem with mixed-boundary
conditions, and (2) show the necessity of the multivariate reg-
ularizing inverse in the solution of the decoding problem.
The example problem chosen is that of the incipient rela-
tive sliding of two elastic bodies in contact. This problem is
particularly interesting in the context of haptics, as the identi-
fication of object shape and the prediction of the onset of and
the prevention of slip are fundamental issues for both human
and robotic exploration and manipulation. It has also been
observed by Salisbury and Hills (1983a, 1983b) that objects
of general shape will have qualitatively similar behavior as
spherical objects, and hence the results presented here will
extend to general objects. It is worth noting that this is a
mixed boundary-value problem, and is an example of case 4
discussed in Section 2.3. The problem demonstrated here is
the indentation of an infinite half-space by an object shaped
as a paraboloid, with simultaneous tangential (Fy,, Fy,) and
normal (F;) load. Assuming Coulomb friction with friction
coefficient u r, the condition for local slip can be expressed as

< JRE)+ )
= no slip,

TIACHY (©)
> R+ )

= slip occurs.

1t is shown by Johnson (1985) that the unique solution to
this problem is that local slip occurs on the outer edge of the
contact area ¢ < r < @, withr = \/x2 + y2, where

1/3
[T
=[l-"—— 7N
o Fyy

R0

is the relative size of the nonslip region, and no slip occurs
forr < c (see Fig. 13). The resulting surface tractions can be
determined using the analytical solution (Johnson 1985) as

F, r2
f(x,y) = ﬂ—;% l—p for 0<r<a,
ﬁ.f_ﬁﬁl 1_£
ma? a?
where ¢ <r <a,
filx,y) =

,usz(,l r? ¢ Fy i r?
na? a?  ana? c?

where r < ¢,

where f; = f, = 0 forr > a, and fi(x, y) is directed along
T .
[Frs Fyo]" with fix, ) = |/ f205,9) + £3x, ).

4.1. Identification of Shape

We use here the optimal sensor combination obtained in Sec-
tion 3.2.2, and hence the encoding part consists of predicting
the sensor signal set (% Pn, €xz, €yz) by using the traction
vector f above with the TFM, T;r given in eq. (4). The
form of these sensor signals is shown in Figures 8a—8c. The
decoding part consists of reconstructing the traction and the
displacement vectors, from noise-contaminated sensor sig-
nals. The displacements will give us the shape of the object
where it is in contact with the surface, but that is by defini-
tion where the traction is nonzero; hence both displacements
and tractions are needed for object-shape identification. For
the indicated region, 32x32 samples were used over a 10-
mmx 10-mm grid with a sensor spacing of 0.4 mm both in the
x- and y-directions. It was found that a smaller sensor den-
sity introduced aliasing error. The sensor depth was 1 mm.
Increasing the sensor depth led to an attenuating effect on the
signal, especially at higher frequencies, making them harder
to reconstruct.

We will now illustrate the necessity of regularization in
the decoding algorithm by adding noise to the sensor signals.
In this example, we use a high-pass-filtered Gaussian noise
with a signal-to-noise ratio of 11 dB. We observed, however,
that the regularization worked satisfactorily for much higher
noise levels as well. In Figures 8d—-8f, we show the resulting
noise-contaminated sensor signals. Profiles of an unregular-
ized solution obtained by inverting Tir in eq. (4) is shown in
Figure 9, and profiles of aregularized solution obtained using
the Wiener inverse given in eq. (5) is shown in Fig. 10. Since
the proposed method of using the Wiener inverse utilizes the
known structure of the noise, it may be expected to perform
better than that proposed by Ellis and Qin (1994).

Plots of the distributions of displacements are shown in
Figure 11, and those of surface tractions in Figure 12. We
observe that the regularized inverse is quite close to the un-
contaminated solution, but the unregularized one is not rec-
ognizable. The locus of points where the forces are nonzero
is the contact region, and u, in that region gives the object
shape in contact with the skin (see Figs. 10-12).

4.2. Onset of Slip

‘We will now illustrate how the static solution described in this
paper can also be useful in a pseudodynamic problem such as
the estimation of onset of slip. For the sake of simplicity, we
will consider the case where the normal load F; is held con-

/Ffo + Fyzo, takes
increasing values, the size of the nonslip region decreases,
and when Fy, = s Fy,, global slip will occur. Therefore,
knowing the relative size of the nonslip region will enable us
to estimate how close a particular loading situation is to slip-
ping. The size of the nonslip region can be inferred from the

tangential traction distribution, as there will be a sharp edge

stant. As the total tangential load, F;, =
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(a) Noise free sensor signal p, (b) Noise free sensor signal €, (c) Noise free sensor signal €,
0.01 | 0.01 0.01,
0
-0.014
5
0 b
y-5 -5 y-5 -5« y=5 -5y
(d) Real sensor signal p, (e) Real sensor signal €, (f) Real sensor signal &y,
0.011 0.01,

04
~0.01.
5
0 0 5
y=5 -5 x y-5 -5y y-5§ -5

Fig. 8. Sensor signals with and without noise. (a), (b), and (c) indicate pp, &x;, &y, in the noise-free case, respectively; (d),
(e), and (f) indicate p,, &x;, &y, in the presence of noise, respectively.
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[, along y=0 f, along y=0
0.02 T T T 0.05 T T v

0.01

—Estim atef
— True

-0.01
—0.02— 5 : ~0.05— :
-5 0 5 -5 0 5
X X
u, along y=0 u, along y=0
0.03— : : 0.06 — s ;
0.02 0.04
X' 0.01 X 0.02
0 0
_0.01— : 5 —0.02— = :
-5 0 5 -5 0 5
X X

Fig. 9. Profiles of solutions fy, f;. 4z, and u, along y = O to the decoding problem obtained using an unregularized inverse.
We observe that the tractions are hardly recognizable, although the solutions for the displacements, #, and u,, are closer to
the true solution than are f; and f;.
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x10~° [ along y=0 £, along y=0
15— ; ; 0.03— ; T
0.02
Sy 0.01f -
o
=5 ~0.01—
-5 0 5 -5 0 5
X X
u, along y=0 u, along y=0
0.03 ' 0.04
0.02 0.03
0.02
s 0.01 N
0.01
0
0
~0.01— 5 : ~0.01— 1 =
-5 0 5 -5 0 5
X X

Fig. 10. Profiles of solutions to the decoding problem obtained using the regularized Wiener inverse. We observe that it
coincides almost everywhere with the true solution, and that the error is therefore small.
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(a) True u, displacement (b) Estimated u, (Wiener) (c) Estimated u, (unregularized)

0.04, 0.04, 0.04

0.02

(d) True u, displacement (e) Estimated u, (Wiener) (f) Estimated u, (unregularized)

0.04, 0.04, 0.04

Fig. 11. Surface plots of decoded surface displacements: (a)—(c) uy; and (d)—(f) u,. As in Figures 9 and 10, we observe
that the true solution and the solution obtained using the Wiener inverse look very similar, but the solution obtained using an
unregularized inverse is considerably worse.
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(a) True f, loading (b) Estimated f, (Wiener) (c) Estimated f, (unregularized)

0.02, 0.02

0.01

(e) Estimated f, (Wiener) (f) Estimated f, (unregularized)

0.04,

Fig. 12. Surface plots of decoded surface-load distributions: (a)—(c) fy; and (d)~(f) f,. Again observe that the true solution
and the solution obtained using the Wiener inverse look very similar, but the solution obtained using an unregularized inverse

is mostly noise.
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along r = c in that distribution. This edge can be seen as two
peaks on the 2-D profile plot of f,(x, y) in Figure 9, and as an
edge in the fy-surface plotin Figure 12. We can measure the
radii ¢ and ¢ from the reconstructed f, (x, y) with the help of
standard edge-detecting techniques. That information, along
with the total tangential and normal loads, F, and F,,, can
either be used in eq. (7) to solve for u ¢ or compared to the line
plot in Figure 13 to estimate how close the contact is to global
slip. For example, we see from Figure 13 that if ¢ = 0.54,
then the tangential load has reached 87.5% of its maximum
value (Fy, = 0.8754 5 Fyp).

5. Conclusions

In this paper, we have delineated a basic computational theory
of haptics that is common to humans and robots. The tactile-
identification problem is separated into the encoding and de-
coding problems, and solutions for both are given. Analysis
of the results is shown to lead to a unique and optimal com-
bination of sensors suitable for tactile sensing. An optimized
multivariate-regularizing algorithm for the solution of the de-
coding problem is also presented. From simulations, it is
shown how the formulation used here can be applied to pre-
dict the onset of slip using tactile sensors. The conclusions of
this paper can thus be summarized as follows:

Relative Slip Area vs. Relative Tangential Load

091 ]

07t 1

0.6f

0.5¢ . d

F/(WF,)

0.4} . 1
0.3F E

02f p

0 x . . L
0 0.2 04 06 0.8 1

c/a

Fig. 13. The relation between the relative tangential load
Fry/(uf Fyy), where Fy, = (szo + F)?O)I/z, and the relative
no-slip radius c¢/a = 1 — F2 /(uyFy,)®. As an example, this
relation indicates that when the no-slip radius is equal to half
the contact radius (c/a = 1/2), Fy, = 0.875u¢Fy,, or the
tangential load is 87.5% of the maximum tangential load.
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1. Tosuccessfully decode a general tactile 3-D signal from
a tactile sensor array, a minimum of three independent
sensors are needed; (pn, €xz, y7) is a unique com-
bination of stress-strain sensory signals which do not
have a directional bias.

2. The transfer-function approach developed here allows
us to look at the qualitative properties and behavior of
the solution, irrespective of the exact form of the load
or object shape.

3. The two items above lead to the TFM formulation, a
convenient and compact formulation that is well known
in control theory. The decoding problem is then re-
duced, essentially, to the inversion of the TFM.

4. Since the inversion is ill-posed in the presence of noise
and discrete sampling, regularization is needed, for
which the multivariate Wiener inverse exists as a stan-
dard tool.

5. Simulations presented in Section 4 show that the above
can be used to calculate surface shape, load distribution,
and contact area, and further, to estimate the onset of
slip.

Appendix: Derivation of Static Transfer
Function Matrices

We start with the differential equations of equilibrium!
0ij,j =0 i, j=x,y,z, (8)
and the linear stress-strain relations according to Hooke’s law
Oij =/\8,’j§;j+2u€ij i, j=ux,y,2, %)
where
1 .
&ij = 3 (ui,j +uj.i) LI=X,%2

and 6;; = 1 if and only if i = j, and is zero otherwise.
Further, the Lame constants A and p (shear modulus) are in
terms of Young’s modulus and the Poisson ratio,

VE E
A= , U= .
(1+v)(1 = 2v) 2(1 + v)
To solve these nine partial differential equations, we make

use of the two-dimensional Fourier transform defined by
Bracewell (1978):

+o0
f(wx,wy) — /[ f(x,y)e_j(wxx-i-fl)yy)dxdy

—00

+o00
1 _ .
fl,y)=-— flor, 0y)e! @+ 4y, dw,.
472 4 Y

—00

1. Here we use tensor notation for compactness, where a “, j” in a subscript
means a partial derivative with respect to the independent variable represented
by j, and repeated symbols in a subscript stand for summation over all indices.
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Assuming that all integrals are well behaved as {x, y| — oo,
we apply this transform to each term in the statements in egs.
(8) and (9). Then the operator % isreplaced by multiplication
by jws, and 5"’— by jw,. We further use D to notate a%, The
nine partial dii%erential equations have now been transformed
into ordinary differential equations in D ( a% becomes adz)'
Denoting

vij = 2é&ij for i # j, (10)

we write eqgs. (8) and (9) using matrix-vector notation as

K75 =0, y =Ku,

0 jo, D 0
0 Jjor O D )
0 0 D 0 jo

A

2u A
A+2p

0

0

L 0 B

- - = - - - 1T - .,
o= [orx;, Gyy, 022> Oxy, Oxzs o'yz] ,and y = [sxx, Eyy
E2zy Pry» Vrzr ?yz]T. Here, the notation in eq. (10) is used
for the sake of simplicity in the definition of K. Eliminating
o and &, we get

[ A+2u A
A A4
A
0
0
0

(=Nl B eNeNe]
OR OO OO

SO O >

KTCKi =0, (11)

— re - =1T
where & = [ity, ity, ;| ,and

KTCK =
D2— Q2022 1)  —wxwy(B2-1) jox(B* = 1)D
—oewy (B2 ~1) DP-QP-l(BP-1)  jo,(8*- 1D
jox (B2 - 1)D joy(B* 1D pHD? - Y+ Q2?

with Q2 = wf + w§ and A% = (A +2u)/u. The determinant
of this matrix is

3
det(XTCK) = g2’ [D2 - 92] ,
and this system therefore has nontrivial solutions of the form
i = (A + Biz+ Ciz)e ™™ i =x,y,z,

where A;, B;, C; are independent of z, and we have also
used the condition that displacements stay finite as z — oo

to include only terms with negative exponents. Substituting
this back into eq. (11), we obtain

, . g+1
AZ = 5 (]wax +JwyAy + Bzﬁz 1 »
jo
By = -— Q"Bz,
jo
Bo= g
Cx = Cy:CZZ:O,
which gives
(1 o0 L%
Uy Q
- _ Jwyz
iy = ¢S 0 1 T
bz Jor  joy _1.ﬁ2+1+z
L @ Q Qp-1 J
Ay
Ay
BZ

12)

The three still-unknown terms, Ay, 4y, andB,, will be de-
termined by boundary conditions at z = 0. Here, we will
first pose the boundary conditions in terms of the load distri-
butions on the surface of the infinite half-space, defined by
z > 0. The z-normal stress o, at the surface z = 0 equals
normal load on the surface, f,. Similarly, the shear stresses
oxz and oy; at z = O equal the shear loads on the same surface,
fx and f;, respectively. The relevant stresses can be derived
by substituting eq. (12) into eq. (9), which become

Oxz

_ ue %
Gyz | = S
. 622

—Qui+ o) oy 2jox (
—WxWy —(a)z + 2a)§) 2jwy (

°(;

joxQ jo,Q

-1

1
o1
,32

77

+ SZz)T

-+ Qz)

-+ Qz)

(13)
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The unknown terms Ay, Ay, andB; can then be found by
letting z = O and either invert eq. (12) with [ily, iy, i,| =
[ﬁ_xo, gyo,_ﬁzo] or eq. (I13) with [Gxz, Gyz Opz) =

[fx, fy’ fZ]

Transfer-Function Matrices (TFMs) for Tractions as Inputs

It is convenient to solve for each load case separately and
state the solution in terms of a TFM, which after we have
substituted for 8 and u, finally becomes

i =Ty f>
with
e~
Tyf = —=
“ a3
202 — 22y +Q2)  —w00,(2v + Q2) Jox(1 — 2v — Qz)

—oxwy Qv +Q2) 297 -0l + Q)  jo,Q( -2 -02)

—jo: Q{1 —2v + Rz) —jo,R( —2v+Q2) (201 - v) + Q)
(14)

The strain and the stress field TFMs are obtained using the
relations in eq. (9) and results in

_ = _ T
E=Tyf, where, &= [6xx, &y, £220 Exy» Exz> Eyz)

with

e

T = 5w

ox (29% —02@v+ Q)  —jwloyQv+Q)  —Q0l(1-2v0-92) ]

—jos0} @v+92) o, (292 - 3@y + 92)) —90L(1-2v - 02)
—j Py (2v — Q22)

—j92w, Qv —2) -3 (1 —2v+ Q)

joy (@ = G2@v +22) jox (P — 2@ +92)) ~Qerw, (1 - 20 — Q)

-2 (2 - 0k2) Q2w w2 jPwz
L 2w wyz —Q? (Q - mgz) jQwyz ]
(15)
and
0 =Tsrf,
where

- T
g = [UXJh Oyy, Ozz, Oxy, Oxzs Uyz] s
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with
e—zSZ
Q3

[eox (2522 + 2vw§, - w}:zﬂ)

To'f =

Jjoy (2uw:2, - w%zSZ) —Q (2vw§ + w,%(l - Qz))—

jox (e} = Q0B2)  joy (207 + 200} ~ 0320) ~2 (2w} +03(1 - 22))
J1QBwrz iQPwyz —3 (14 29)

joy (92 —w Qv + zsz)) jeox (92 -2y + zQ)) ~Qagwy (1 - 20 — 2Q)

-q? (Sl —w?,z)

szxa)yz j§23mxz

—q2 (sz - w%z)

szxwyz jQ3nyZ

(16)

We also calculate the TFM for the mean normal stress, and
defined as

1
Pn = 5(0x+0y+0z),
which gives
ﬁn = Tpnff,
with
2E e~

oy jo, —Q]. an

Ty, s = ?m[ J

The relationship between it and f can be found by letting
z = 01in eq. (14), obtaining

g = Tuosr £
with
Tu()f = 2“‘93
2(2 — vco%) —2voywy  j(1 = 20)wx Q2
—200, 0y 2(Q —ve?) j(1 —20)wyQ

—j(1 =200, 2 —j (1 — 20,2 2(1 — V)2
(18)

We note that the z-component decouples from the x- and y-
components when the material is incompressible (v = 0.5).

TFMs for Displacements as Inputs

When the surface displacements are considered as the inputs,
the TFMs are found similarly as the ones in the previous
section:

f = Tfuo ip,
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with
i
Thup = e
o = 3 T an)@

Q%3 — ) + w? wxwy 27(1 = 2v)we 02

wxwy LB -4+l 2jd-wey |, (19)
2j(1—20)w; 2 2j(1 —20wy2 41 —v)2?
U= Tull()ﬁOs
and
T, e
MO (3 4@
GB-4Q— wfz —WxWyz —Jwx 2z
—wywyz B-4v)Q — w%z —jwyQz (20)
—jwxQz —jwySz B —4v)Q2 + 027
For the strains
&= Tsuoﬁo,
with
e—zQ
T;
G JEPYS
B jwx ((3 —-40)Q - w%z) —ngw)vz Qw;z
*)'(wa%Z jwy ((3 —4)Q -~ m}z) ngz
—jQox (1 - Q2) —jQwy (1 - 22) -2 2(1 - 2v) + Q2)

é—wy ((3 —4)Q ~ 2w%z) %wx ((3 — 402 - 2m§z) Quywyz

-1 (6-ma? + o} -202) ~}oroy(l - 29) S (L - 2v) + Q2)

~doroy - 2.2 -3 (6-4992 +0}(1 - 200) jQwx(l - ) + 22) |

2D
and for the stresses,
0 = Touyito,
with
—2Q
Moy = s

Jox ((3 -2 - w%z) joy (2\19 - w%z) -Q (Z\JQ - w}zz)

Jwx (2\19 - w%z) J@y ((3 —2vQ - w;z) - (ZvQ - r.ujz,z)

—)Qux (1 ~2v — Qz) —1Qwy(l =2 - Q) ~02 (20 - v) + 92)

%wy ((3 —4v)Q — 21.))2(1) ‘%mx ((3 —4v)$t ~ Zmﬁz) Quywyz

=3 (6-am2? + 0} - 290) —Soray(1 - 202) 9wz (1 = 2v + Q2)

. ((3 ~ane? +wfi - ZQz)) 79wy (1 =20 + Q2) |

(22)

»-%wxmy(l ~28Q2)

Finally, for the mean normal stress, we obtain

ﬁn = TpnuoﬁO,
with
2E 79 , _
Tpauo = —3—671))[ Jox jwy £ ] (23)
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Abstract

This paper introduces a new principle and real structure of a non-
scanning, fast-response, arbitrarily distributed tactile-sensor array
using a piezoelectric resonator. The piezoelectric sensor has high
stability, and the quasi-digital output can be measured easily and
precisely. The sensory position can also be measured quickly and
precisely. In addition, the tactile sensor array of soft piezoelectric
film is adaptive to the sensitive skin of robot.

1. Introduction

Perception of the external environment and objective state is
a very important feature of intelligent robots. It is inevitable
that a sensor array is the base of the sense of touch in robotics.
A tactile-sensor array acts as human sensory receptors in skin.
When an external impulse is applied to the human body, sen-
sory receptors give out sensory signals, and the sensory sig-
nals are conducted to the central nervous system along nerve
fibers in parallel, so the brain can react as fast as possible. In
a sensor array, the usual way to generate an output is scan-
ning; that is, the sensory signal of each element in the array is
read in sequence under the control of a designated clock. So
if there are a large number of sensory elements and diverse
measurands in a sensor array, the response of a tactile-sensor
array is not fast (Bicchi, Salisbury, and Brock 1993; Cheung
and Lumelsky 1992).

Because of their excellent electromechanical coupling ef-
fects, piezoelectric materials have been successfully used as
sensory elements. Domenici and Rossi proposed “A stress-
component-selective tactile sensor array” (1992), and Morten,
Cicco, and Prudenziati introduced a “resonant pressure sensor
based on piezoelectric properties of ferroelectric thick film”
(1992). In these papers, scanning is selected as the output
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An Arbitrarily
Distributed Tactile-
Sensor Array Based
on a Piezoelectric
Resonator

method of the array sensor, and resonant sensing is utilized
for an identical sensor; therefore, these sensors are not adapt-
able for large-scale and fast tactile-array sensors.

This paper introduces a new principle and structure for
a nonscanning, fast-response, arbitrarily distributed, tactile
piezoelectric resonant-sensor array. For example, once a
pressure or force is applied to the surface of a quartz crys-
tal plane, the quartz resonant frequency in the activation area
will change along with the diversity of the applied pressure
or force. At the same time, the resonant wave will propagate
in all directions within the quartz plane. Four piezoelectric
transducers are placed on each corner of the quartz plane to
convert mechanical vibration of the plane into an electric form
to detect its resonant frequency. The position of the sensing
point may be determined from the different code of resonant
frequency. The sensing frequency of the quartz resonator has
very high precision and stability, and value of force can be
computed easily and accurately. The deposited silver film
employed as electrodes on both surfaces can be arranged in
any shape, making it possible to design a tactile sensor array
in any arbitrary shape. The sensory method in an array of this
type is very specific, and the output is a quasi-digital signal;
thus the output antijam is excellent. Moreover, its transmis-
sion and measurement can be digitally conducted directly.

2. Precision Resonant Piezoelectric Sensors
Based on Quartz

The resonant frequency of a piezoelectric resonator is very
stable. The frequency drift of quartz is over 107°. Usually,
an AT-cut quartz crystal is used to construct a resonant-force
sensor, as shown in Figure 1. When force or pressure is ap-
plied to a resonant quartz slice, strain will occur on the slice,
and the resonant frequency f is given as follows:

Afff = —f)/f =K xF, 1)



