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Abstract The objective of this paper is to present some of
our recent developments in meshless methods. In partic-
ular, a technique is given ± the method of ®nite spheres ±
that is truly meshless in nature in the sense that the nodes
are placed and the numerical integration is performed
without a mesh. The method can be viewed as a special
case of the general formulation known as the meshless
local Petrov±Galerkin (MLPG) procedure. Some of the
novel features of the method of ®nite spheres are the nu-
merical integration scheme and the way in which the
Dirichlet boundary conditions are incorporated. A new
way of modeling doubly-connected domains is also pre-
sented. Various example problems are solved to demon-
strate the method.

List of symbols
A Interior of a set in Rn; n � 1; 2; 3:
oA Boundary of set A
A = A [ oA Closure of set A
supp�v� = fx 2 A; v�x� 6� 0g Support of a function v
X Open bounded domain in Rn; n � 1; 2; 3:
C = oX Boundary of X (assumed to be Lipschitz

continuous)
n Outward unit normal de®ned on C
B�xI ; rI� = fx 2 A; kxÿ xIk0 < rIg Open sphere of radius

rI centered at xI in n-dimensional Euclidean
space (n � 1; 2 or 3)

S�xI ; rI� = fx 2 A; kxÿ xIk0 � rIg Surface of the
n-dimensional sphere of radius rI centered
at xI .

h a global measure of the support radii
(determined by the values of rI)

hIm�x� = The mth shape function at node I
Cm�A� Space of functions with continuous derivatives

up to order m on A

Cm
0 �A� = fvjv 2 Cm�A�; supp(v) is a compact subset

of Ag
Qm�A� Space of polynomials of degree � m de®ned

on A
Vh;p The two-parameter global approximation

space (depending on parameters h and p).
vh;p 2 Vh;p

a��; �� A bilinear form from Vh;p � Vh;p # R

V
h;p
I The two-parameter local approximation space.

vh;p
I 2 V

h;p
I

1
Introduction
In spite of the great success of the ®nite element method
and the closely related ®nite volume method as effective
numerical tools for the solution of boundary value prob-
lems on complex domains, there has been a growing in-
terest in the so-called ``meshless'' methods over the past
decade. A number of methods have been proposed so far
including the smooth particle hydrodynamics (SPH)
method (Monaghan, 1988), the diffuse element method
(DEM) (Nayroles et al., 1992), the element free Galerkin
(EFG) method (Belytschko et al., 1994), the reproducing
kernel particle method (RKPM) (Liu et al., 1993), the
moving least-squares reproducing kernel method
(MLSRK) (Li and Liu, 1996; Liu et al., 1997) the partition
of unity ®nite element method (PUFEM) (Melenk, 1992;
Melenk and Babu�ska, 1996; Babu�ska and Melenk, 1997;
Melenk and Babu�ska, 1997), the hp-clouds method (Duarte
and Oden, 1996a; Duarte and Oden 1996b), the repro-
ducing kernel hierarchical partition of unity method (Li
and Liu, 1999a, b), the ®nite point method (OnÄate et al.,
1996), the local boundary integral equation (LBIE) method
(Zhu et al., 1998b) and the meshless local Petrov-Galerkin
(MLPG) method (Atluri et al., 1999a, b; Atluri and Zhu
1998a, b).

The primary reason for the interest in meshless meth-
ods is that in the ®nite element/®nite volume method a
mesh is required. The automatic generation of good
quality meshes presents signi®cant dif®culties in the
analysis of engineering systems (especially in three di-
mensions) and these dif®culties are circumvented when no
mesh is needed.

The established computational methods which are
based on the weighted residual technique have three key
ingredients:
Interpolation: An expansion of the unknown ®eld vari-
able/s in terms of trial basis/shape functions and unknown
parameters,
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Integration: The determination of the governing algebraic
equations by setting the residual error orthogonal to a set
of test functions which may or may not coincide with the
trial functions, and
Solution of the algebraic equations: The solution of the
governing equations for the unknown parameters.

If the ®rst two steps can be performed without a mesh,
then what results is a ``truly meshless'' method. Many of
the early ``meshless'' techniques such as the DEM, EFGM,
hp-clouds method etc. are not truly meshless since even if
the interpolation is independent of a background mesh,
the integration is not.

In the ®nite element/®nite volume methods the inter-
polation functions are polynomials (or mapped polyno-
mials) and the numerical integration is performed most
ef®ciently using Gauss-Legendre product rules on n-
dimensional cubes or tetrahedra (in the mapped isopara-
metric space). Failure to perform the integration accu-
rately results in loss of accuracy and possibly stability of
the solution scheme (Bathe, 1996). In most mesh-free
techniques, however, complicated non-polynomial inter-
polation functions are used which render the integration
of the weak form rather dif®cult (Dolbow and Belytschko,
1999).

Another dif®culty lies in the accurate imposition of the
Dirichlet boundary conditions. The Kronecker delta
property of the ®nite element/®nite volume shape func-
tions allows the incorporation of these conditions very
ef®ciently (Bathe, 1996). But the interpolation functions
used in most meshless schemes do not satisfy this condi-
tion at the nodes and hence the imposition of Dirichlet
boundary conditions becomes complicated. Popular with
researchers are techniques involving Lagrange multipliers
(Belytschko, 1994), penalty formulations (Atluri and Zhu,
1998a, b), use of ®nite elements along Dirichlet boundaries
(Krongauz and Belytschko, 1996), modi®ed variational
principles (Lu et al., 1994), corrected collocation tech-
niques (Wagner and Liu, 1999) and transformation
methods (Atluri et al., 1999a).

A survey of meshless techniques may be found in
Duarte (1995) and Belytschko et al. (1996). The major
meshless methods described in these two review works,
namely the RKPM, SPH method, DEM and EFG method
are based on three classes of interpolation functions:
wavelets, moving least squares functions (used in the DEM
and the EFG method), and the partition of unity (PU) or
hp-clouds functions (used in the PUFEM and hp-clouds
methods). All these methods are really ``pseudo meshless''
since they use a background mesh for the numerical in-
tegration (and sometimes even for imposing the Dirichlet
boundary conditions).

The ®nite point method (OnÄate et al., 1996) is a truly
meshless scheme. The method uses a weighted least
squares (WLS) interpolation and point collocation, thus
bypassing integration. However, methods based on point
collocation are notorious for the sensitivity of the solution
on the choice of ``proper'' collocation points.

As a truly meshless technique, the meshless local Pet-
rov±Galerkin (MLPG) method (Atluri and Zhu, 1998a)
seems to be the most promising. The technique is based on
a weak form computed over a local sub-domain, which can

be any simple geometry like a sphere, cube or an ellipsoid
for ease of integration. The trial and test function spaces
can be different or may be the same. Any class of functions
with compact support satisfying certain approximation
properties (like the MLS functions or PU functions) can be
used as trial and test functions (Atluri et al., 1999a). This
method has been successfully applied to a wide range of
problems (Atluri et al., 1999a, b; Atluri and Zhu, 1998a, b)
and is of very general nature. A method using a similar
approach but boundary integral techniques is the local
boundary integral equation (LBIE) method (Zhu et al.,
1998b).

However, although considerable efforts have been made
in the development of meshless methods, the currently
available techniques are still computationally much less
ef®cient than the well established ®nite element/®nite vol-
ume procedures. The primary reason is that complicated
(non-polynomial) shape functions are employed and the
required numerical integration is very dif®cult to perform
ef®ciently. Hence some researchers (refer to Oden et al.,
1998; Duarte et al., 1999) have reverted back to
developing ®nite element techniques incorporating certain
aspects of the meshless methods. In this paper, however, we
concentrate attention on methods which are truly meshless
and endeavor to make them as ef®cient as possible.

The objective of this paper is to present some devel-
opments using the MLPG approach with the aim of
reaching a powerful solution technique. In the method of
®nite spheres, the MLPG concept is used with a speci®c
choice of geometric sub-domains, test and trial function
spaces, numerical integration technique, and a procedure
for imposing the essential boundary conditions.

The method of ®nite spheres uses compactly sup-
ported PU functions to form a globally conforming ap-
proximation space and a Bubnov±Galerkin formulation
as the weighted residual scheme. Figure 1 shows a
schematic of the method as a natural generalization of
the ®nite element method. In the classical ®nite element/
®nite volume method the support of a shape function
corresponding to a node is usually a polytope in n-di-
mensions whereas the method of ®nite spheres uses
n-spheres as supports. Integration is performed on the
n-dimensional spheres or spherical shells using special-
ized cubature rules.

A brief outline of the paper is as follows. In Sect. 2 we
discuss in detail our justi®cation for the use of PU basis
functions based on Shepard partitions of unity and sum-
marize key results relating to consistency and a-priori error
analysis. In Sect. 3 we derive the weak form for a symmetric
second-order differential operator. In Sect. 4 we discuss the
imposition of Neumann and Dirichlet boundary conditions.
Even though we primarily concentrate on the n-dimen-
sional sphere as our integration domain, we realize that to
deal with doubly-connected domains ef®ciently, the ideas of
support and integration domain have to be decoupled. To
address the solution of such problems we present, in Sect. 5,
our developments using n-dimensional spherical shells.
In Sect. 6 we deal with issues related to numerical integra-
tion on the n-dimensional spheres and spherical shells.
Finally, in Sect. 7, several numerical solutions are provided
to demonstrate the method of ®nite spheres.
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2
The interpolation scheme
The ®rst step in the Bubnov±Galerkin procedure is to
construct ®nite dimensional subspaces Vi of a Sobolev
space, in which the weak solution is assumed to exist. In a
large variety of practical applications, namely, problems
associated with second-order partial differential operators,
the Sobolev space under consideration is H1�X�, the ®rst-
order Hilbert space. We summarize the theory in that
setting, extension to higher-order spaces can be achieved.
We are interested in approximation spaces which satisfy
the following minimal requirements:

Consistency or polynomial reproducing property The
consistency condition is related to the degree of the gov-
erning partial differential equation. For example, when
solving an elasticity problem using a displacement-based
formulation, the approximating functions should not only
be able to reproduce constant functions (the so-called
``rigid body'' modes) but also linear functions (the ``con-
stant strain'' states), i.e., we look for at least ®rst-order
consistency. Thus, we should be able to reproduce poly-
nomials to a certain order to satisfy the consistency
requirement.

Local approximability This is a more general requirement
than just consistency and is related to the reproducing
properties of the trial functions. If we know the nature of
the solution in certain subdomains of X, we should be able
to incorporate speci®c functions in the global approxi-
mation space in order to enrich this space to closely rep-
resent the solution. There are certain situations where
singularities arise naturally in the solution of the govern-
ing differential equations and polynomials perform poorly
in resolving such singularities. The idea is to use available
analytical solutions to improve numerical predictions.

Continuity The approximation functions should satisfy
certain minimal continuity conditions.

Localization by compact support One of the major rea-
sons of the success of the ®nite element procedure is the
concept of approximations using piece-wise polynomials

on compactly supported domains (elements). The main
advantages of using compactly supported functions, i.e.
functions that are nonzero only on small subsets of X, are
that (1) they allow the localization of the approximation
(and hence steep gradients can be handled by using more
functions locally), (2) they result in banded system ma-
trices since only a few of the supports overlap at any given
point of the domain and (3) they allow a natural means of
controlling the rate of convergence of numerical schemes
through h, p or hp-type re®nements.

There is no unique way of constructing the approxi-
mation spaces. The current interest in the so-called
meshless methods has been primarily spurred by the
ability to construct non-polynomial approximation spaces
with compact support without the need for a background
mesh. As we mentioned already, examples of such
approximation functions are compactly supported wavelet
functions, the MLS (moving least squares) functions
(Nayroles et al., 1992; Belytschko et al., 1994), the PU
functions of Babu�ska and Melenk (Melenk and Babu�ska,
1996) and the hp-cloud functions of Duarte and Oden
(Duarte and Oden, 1996a, b). In the wavelet-based meth-
ods, compactly supported functions with desirable prop-
erties are developed using FIR (®nite impulse response)
®lter-banks. The dif®culties of using wavelets as basis
functions are that they are designed to have desirable
orthogonality properties in L2�X� but not in higher-order
Hilbert spaces, the computation of inner products through
``connection coef®cients'' is very cumbersome and the
application of wavelets to arbitrary domains is still being
researched.

The moving least squares technique of generating
compactly supported functions having desirable repro-
ducing properties is quite appealing, but has some draw-
backs, most important of which is the need to invert a
m�m matrix (when m basis functions are used to gen-
erate the MLS shape functions). Besides increasing the
computational cost for any m > 1, this requirement means
that at each evaluation point at least m weight functions
should be nonzero for the matrix to be invertible.

Of the existing techniques for the generation of com-
pactly supported basis functions, the methods developed
using the partition of unity (PU) paradigm appear to be

Fig. 1a, b. Discretization of a domain W in R2 by the ®nite element method (a) and the method of ®nite spheres (b). In (a) the domain is
discretized by quadrilateral elements with a node at each vertex point. The ®nite element shape function hI is shown at node I. In (b)
the domain is discretized using a set of nodes only. Corresponding to each node I, there is a sphere (i.e. a disk in R2), centered at the node,
which is the support of a set of shape functions corresponding to that node. One such shape function, hI0, is shown in the ®gure
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the most general. They possess the desirable properties we
have listed above and it is possible to generate low-cost
partitions of unity (without the need to invert matrices)
(Duarte and Oden 1996a). Moreover, the ®nite element/
®nite volume basis functions and the MLS basis functions
may be looked upon as specialized applications of the
partition of unity construction technique.

We have adopted the PU paradigm to generate the shape
functions for the method of ®nite spheres. We brie¯y
summarize the construction of these basis functions and
state important results in the following two sections. For
details regarding the theory of the PU method as well as for
proofs of the theorems see Melenk (1992), Melenk and
Babu�ska (1996), Duarte and Oden (1996a).

2.1
The partition of unity functions
The ®rst step in the PU method is of course the generation
of the partition of unity functions.

De®nition 2.1 Let X 2 Rn �n � 1; 2; 3� be an open
bounded domain. Let a family of open sets fXI ; I �
1; 2; . . . ;N;N � N�h�; h > 0g form a covering for X, i.e.,
X � SN

I�1 XI . Then there exists a system of functions
f/IgN

I�1 of Cs
0�Rn�; s � 0 such that

1.
PN

I�1 /I�x� � 1 8 x 2 X.
2. supp�/I� � XI .

Then this system of functions f/IgN
I�1 is de®ned as a

partition of unity subordinate to the open cover fXIg
(Yosida, 1978).

The sets fXIg are also called ``clouds'' or ``patches''
(Melenk and Babu�ska, 1996; Duarte and Oden, 1996a).
In the method of ®nite spheres (MFS) we choose XI �
B�xI ; rI�, which geometrically represents a sphere. We
associate a ``node'' with the center, xI �I � 1; 2; . . . ;N�,
of each sphere. By CI we denote the surface of the sphere,
S�xI ; rI�. We use a particular family of (nonpolynomial) PU
functions, called the Shepard partitions of unity (Shepard,
1968) having zeroth-order consistency (i.e., these functions
can only reproduce constant functions exactly). Let WI�x�
denote a weighting function with the following properties:

1. WI�x� 2 Cs
0�Rn�; s � 0:

2. supp�WI� � XI .

The Shepard partition of unity functions are de®ned as

u0
I �x� �

WIPN
J�1 WJ

: �1�

Important considerations in the choice of the weight
functions are the continuity class to which they belong and
how easily they can be differentiated and integrated. We
follow Duarte's work (Duarte and Oden, 1996a) and
choose quartic spline weight functions (which belong to
C1

0�X�):

WI�s� � 1ÿ 6s2 � 8s3 ÿ 3s4 0 � s < 1
0 s � 1

�
where s � �kxÿ xIk0�=rI :

2.2
The approximation spaces V h;p

Having chosen the Shepard functions which satisfy the PU
requirement, we are in a position to develop approxima-
tion spaces which are subspaces of H1�X�. Let
V

h;p
I � H1�X \ XI� be a two parameter family of function

spaces, the parameters being h (the size of the sphere) and
p (the polynomial order) (Melenk and Babu�ska, 1996;
Duarte and Oden, 1996a), such that

Qp � span�Vh;p
I � 8 I

then we de®ne the two-parameter global approximation
space Vh;p as

Vh;p �
XN

I�1

u0
I V

h;p
I � H1�X� :

Since V
h;p
I � spanm2I�pm�x��, where I is an index set and

pm�x� is a member of the local basis, any function
vh;p

I 2 V
h;p
I can be expressed as vh;p

I �x� �
P

m2I aImpm�x�,
for aIm 2 R. If we multiply each pm�x� by u0

I �x�, the re-
sulting function has the same support as u0

I �x�. The global
approximation space is constructed using such products.
Hence, any function vh;p 2 Vh;p can now be written as

vh;p�x� �
XN

I�1

X
m2I

hIm�x�aIm �2�

where

hIm�x� � u0
I �x�pm�x�

and hIm is a basis/shape function associated with the mth
degree of freedom of node I. We now state, without proof,
some important properties of the discretization scheme
(for proofs see Melenk and Babu�ska, 1996; Duarte and
Oden, 1996a). We use the symbol C to denote a generic
positive constant which may take different values at suc-
cessive occurrences (including in the same equation).

Theorem 2.1 (Reproducing property). If any function
pm�x� is included in the local bases, it is possible to exactly
reproduce it.

Corollary 2.1 (Consistency). If Qm � span�Vh;p
I � 8 I, then

Qm � span�Vh;p�.

Theorem 2.2 (Continuity). Let WI ; I � 1; 2; . . . ;
N 2 Cs

0�XI� and let pm�x� 2 Cl�X� for s; l � 0; then the
shape functions hIm�x� satisfy hIm�x� 2 C

min�s;l�
0 �XI \ X�.

Theorem 2.3 (Approximation error estimate). Let u be
the function to be approximated, and let the given PU
functions f/I�x�g satisfy

k/IkL1�Rn� � C ;

kr/IkL1�Rn� �
C

rI
:

Assume that the local approximation spaces V
h;p
I have

the following properties: On each patch XI \ X; u can be
approximated by a function vh;p

I 2 V
h;p
I such that
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kuÿ vh;p
I kL2�XI\X� � �1�I; h; p; u� ;

kr�uÿ vh;p
I �kL2�XI\X� � �2�I; h; p; u� :

then there is a function vh;p 2 Vh;p satisfying

kuÿ vh;pkL2�X� � C
XN

I�1

��1�I; h; p; u��2
 !1=2

kr�uÿ vh;p�kL2�X� �
 XN

I�1

C

rI

� �2

��1�I; h; p; u��2

� C �2�I; h; p; u�� �2
!1=2

:

Theorem 2.4 (Convergence rate of the h-version). Let
u 2 Hk�X�; k � 2. Let V

h;p
I have the following approxima-

tion properties:

�1�I; h; u� � Crl�1
I ku kHk�XI\X�

�2�I; h; u� � Crl
I ku kHk�XI\X�

for some appropriate l > 0. If uh;p is the numerical solu-
tion, then

kuÿ uh;pkL2�X� � Chl�1kukHk�X�;

kr�uÿ uh;p�kL2�X� � Chlku kHk�X� :

Theorem 2.1 states that if we include a-priori knowledge
of the solution in local subdomains, then this knowledge
will enhance the approximation capability because the
functions representing this knowledge can be reproduced.
Corollary 2.1 assures that it is possible to obtain any order
of consistency, at least theoretically. It turns out that for
our choice of the PU functions, the functions hIm are lin-
early independent, i.e. Vh;p � span�hIm�x��; as long as the
local bases are linearly independent. Theorem 2.2 tells us
what order of continuity is obtained by the global ap-
proximation. Theorem 2.3 is of very general nature and
provides an interpolation error estimate if the local ap-
proximation behavior is known. Theorem 2.4 is an appli-
cation of the previous theorem to obtain a bound on the
solution error. Speci®cally if a polynomial basis of degree
p is used as the local approximation space, and k � p� 1,
then l � p and an O�hp�1� convergence in the solution
variable is predicted. Duarte and Oden have pointed out
that the use of Shepard functions to generate the partitions
of unity is probably the least expensive for a given level of
accuracy (Duarte and Oden, 1996a).

3
The weak form for a n-dimensional sphere
In this section, we develop the weak form and discretized
equations of the governing differential equation by inte-
grating over each n-dimensional sphere centered around a
node. We focus on a second-order partial differential
equation in a single variable. Extension to multiple vari-
ables and higher-order differential operators can be di-
rectly achieved.

Consider the operator equation

Au � f in X �3�
where A: DA � H2�X�# L2�X� is a second-order
symmetric positive de®nite differential operator with
domain of de®nition DA and f 2 L2�X� is the forcing
function, with

A � ÿ
Xd

i;j�1

o
oxi

aij�x� o
oxj
� c�x�

where d is the dimensionality of the problem, aij�x� and
c�x� are bounded measurable coef®cients. Assume that
Neumann boundary conditions are prescribed over the
boundary CfXd

i;j�1

aij�x� ou

oxj
ni � f s on Cf �4�

where ni is the component of the outward unit normal on
the boundary along the ith direction (see Fig. 2), and
Dirichlet boundary conditions are provided on the boun-
dary Cu

u � us on Cu �5�
where C � Cu [ Cf and Cu \ Cf � 0. In the Bubnov±
Galerkin procedure, we ®nd the approximation uh;p 2 Vh;p

to the true solution u by making the residual �Auh;p ÿ f �
orthogonal to the basis functions fhImg. Hence, corre-
sponding to node I, we generate the following set of
equations:

�Auh;p ÿ f ; hIm� � 0; m 2 I :

Using Eq. (2) and Green's Theorem, we obtain the mth
equation corresponding to the Ith node asXN

J�1

X
n2I

KImJnaJn � fIm � f̂Im �6�

Fig. 2. General three-dimensional body discretized using a set
of nodes. Associated with each node I is a sphere WI. Spheres that
lie completely inside the domain are called ``interior spheres''
while those which intersect the boundary of the domain, C, are
called ``boundary spheres''. Dirichlet boundary conditions are
prescribed over a portion Cu of the boundary while Neumann
boundary conditions are prescribed over Cf ; C � Cu [ Cf ;
Cu \ Cf � 0
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where

KImJn � a�hIm; hJn� �
Z

XI\X
c�x�hImhJn dX

�
Xd

i;j�1

Z
XI\X

aij�x� ohIm

oxi

ohJn

oxj
dX ;

fIm �
Z

XI\X
f hIm dX ;

f̂Im �
Xd

i;j�1

Z
CI

hImniaij�x� ouh;p

oxj
dC :

In the formulation we distinguish between ``interior
spheres'' and ``boundary spheres''. An interior sphere has
zero intercept with the boundary, i.e., XI \ X � XI (see
Fig. 3a). A boundary sphere has a nonzero intercept with
the boundary (see Fig. 3b, c). For an interior sphere,
therefore, f̂ Im � 0 due to compact support and Eq. (6)
reduces to:XN

J�1

X
n2I

KImJnaJn � fIm :

4
Imposition of boundary conditions
In this section we discuss how the boundary conditions,
given by Eqs. (4) and (5), can be incorporated ef®ciently.

4.1
Natural boundary conditions
In the ®nite element/®nite volume method, due to the
Kronecker delta property of the shape functions, only the
nodes on the boundary are subjected to the applied
boundary conditions. But in the MFS, the basis functions,
de®ned on the spheres, do not satisfy the Kronecker delta
condition and hence, any sphere, with nonzero intercept
with the boundary contributes to the boundary integral.
Let CfI be the intercept of the sphere I with the boundary
Cf , see ®gure 3b, then Cf � [I2Nf

CfI , where Nf is the
index set of nodes considered. For such a sphere, Eq. (6)
applies with

f̂ Im �
Z

CfI

hImf s dC :

4.2
Essential boundary conditions
The imposition of the essential boundary conditions is
more dif®cult in the absence of the Kronecker delta
property than the imposition of the natural boundary
conditions. In the following we present a technique for the
incorporation of the essential boundary conditions and
show that a speci®c arrangement of nodes on the boun-
dary may emulate Kronecker-delta-like properties.

Referring to Fig. 3c we note that any node with nonzero
intercept of its sphere with the boundary Cu contributes to
the boundary integral in Eq. (6). Let CuI

be the intercept of
the sphere I with the boundary Cu, then Cu � [I2Nu

CuI
,

where Nu is the index set of nodes considered. Making
use of the chain rule of differentiation, we may now write
f̂ Im as

f̂ Im �
XN

J�1

X
n2I

KUImJnaJn ÿ fUIm ;

where

KUImJn �
Xd

i;j�1

Z
CuI

o
oxj

aij�x�hImhJnni

ÿ �
dC ;

fUIm �
Xd

i;j�1

Z
CuI

us o
oxj

aij�x�nihIm

ÿ �
dC :

We note that KUImJn is a symmetric stiffness term
(KUImJn � KUJnIm) and fUIm is a (known) forcing term.
Hence, Eq. (6) becomes

XN

J�1

X
n2I
�KImJn ÿ KUImJn�aJn � fIm ÿ fUIm : �7�

This procedure for imposing the Dirichlet boundary con-
ditions is quite general but may be somewhat dif®cult to
implement. Namely, if the nodes are distributed on and
near the boundary at random and the boundary is a

Fig. 3a±c. Figure showing ``interior spheres'' (a) and ``boundary spheres'' (b) & (c). Integration is performed on WI in (a) and on
XI \ X in (b) & (c)
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complex (d-1) dimensional surface, then the computation
of the intercepts of the spheres with the boundary surface
may become computationally intensive.

To circumvent this dif®culty, we propose the special
distribution of the boundary spheres shown in Fig. 4. In
this construction, we assume that the nodes are placed on
the boundary such that the distance between two succes-
sive nodes is the radius of the spheres and that there are
no nodes whose spheres intercept the boundary other than
those that are on the boundary. This nodal arrangement
overcomes the problem of ®nding the intercept of the
boundary spheres with complex boundaries. The ar-
rangement also gives rise to a Kronecker delta-like prop-
erty. Then at any such boundary node I, the basis
functions hIm are such that

hI0�xI� � u0
I �xI�

and

hIm�xI� � 0; m 6� 0 :

From Eq. (1), by construction,

u0
I �xI� � WIPN

J�1 WJ

� 1 :

Hence, the basis function hI0 at node I enjoys the Krone-
cker delta property

hI0 � 1 at node I
0 at all other nodes

n
whereas the higher-order basis functions exhibit the
property

hIm � 0 at node I
0 at all other nodes

n
for m 6� 0 :

Hence

vh;p�x � xI� � aI0 :

Thus the speci®ed value of the ®eld variable u at node I on
the Dirichlet boundary is taken up by the coef®cient of hI0.
The implications are that for speci®ed homogeneous
(zero) Dirichlet conditions, we simply remove, from the
stiffness matrix, all the rows and columns corresponding
to the Shepard functions associated with the nodes that are
on the Dirichlet boundary and solve the resulting set of
reduced Eq. (7). If inhomogeneous Dirichlet conditions

are speci®ed, we also remove the rows and columns cor-
responding to the Shepard functions associated with the
nodes on the Dirichlet boundary but need to bring the
effect of the nonzero prescribed displacements to the right
hand side of the governing equations. Hence, Eq. (7) be-
comes (m 6� 0 with I 2Nu�XN

J�1

X
if J2Nu

n2I

n6�0

�KImJn ÿ KUImJn�aJn � fIm ÿ fUIm: ÿ fUIm

where

fUIm �
X

J2Nu

�KImJ0 ÿ KUImJ0�us�xJ�

and xJ is the coordinate of node J. Of course fUIm � 0
when zero Dirichlet conditions are prescribed.

5
Doubly-connected domains:
the n-dimensional spherical shell
So far we have concentrated on nodes whose integration
domains are singly-connected and therefore coincide with
the support. There are certain situations, however, for ex-
ample, a hole in a plate, or a spherical cavity inside a three-
dimensional continuum, when it would be effective to be
able to directly model doubly-connected domains. The
error introduced in modeling the boundaries of these
cavities by placing nodes along their periphery is then
eliminated and hence less nodes are required to model such
geometries. Also, the known behavior of the solution of the
governing equations can be included in the local bases of
these nodes and thus higher convergence rates can be
attained. To be able to model doubly-connected domains,
we decouple the regions of support and integration.

Assume that there is a spherical cavity of radius ri and
center xI inside the domain X (see Fig. 5a). We place a
node, I, at the center of the cavity and associate with it
a weight function WI such that supp�WI� � B�xI ; rI�, but
we choose the integration domain for this node as

XI � B�xI ; ro�nB�xI ; ri�
for some ri < ro � rI . We see that Eq. (6) applies with the
integral in f̂ Im written as the sum of two integrals (ap-
plying contour integration as shown in Fig. 5a)

f̂ Im �
Xd

i;j�1

I
CIo

aij�x�hImni
ouh;p

oxj
dC

�
Xd

i;j�1

I
CIi

aij�x�hImni
ouh;p

oxj
dC ; �8�

where CIo � S�xI ; ro� and CIi � S�xI ; ri�. We consider two
cases:

Case (1) ro � rI : The ®rst integral in Eq. (8) is zero due to
the property of compact support and we have

f̂ Im �
Xd

i;j�1

I
CIi

aij�x�hImni
ouh;p

oxj
dC :

Fig. 4a, b. Nodal arrangement for easy incorporation of Dirichlet
boundary conditions on (a) convex and (b) concave boundaries
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Usually we have some boundary data prescribed on the
inside surface of the cavity which can be incorporated
using the techniques described in the previous section.

Case (2) ro < rI : In this case we have to use Eq. (8) in its
full form.

6
Numerical integration
Numerical integration is an important ingredient of a
meshless method. In the ®nite element method the func-
tions to be integrated are usually polynomials (or mapped
polynomials) whereas in the MFS, the PU shape functions
are rational (nonpolynomial) functions. In the ®nite ele-
ment method, the elements can be mapped to n-dimen-
sional cubes and hence Gauss-Legendre product rules are
probably most appropriate (Stroud, 1971). Since in the
MFS, the integration domains are spheres or spherical
shells for interior domains and general sectors for boun-
dary spheres, a separate class of integration rules is re-
quired. In Appendix A we state, without proof, Gaussian
product rules of cubature on two-dimensional sectors and
annuli. Even though cubature rules exist for circular an-
nuli as well as spheres and hyperspheres (Peirce, 1957a, b;
Lether, 1971; Stroud, 1971; Stoyanova, 1997), rules for
annular sectors seem not to have been published. Note that
the integration rules we are using are different from those
in Atluri et al. (1999a).

Interior disk For an interior disk (see Fig. 6a, b), we use
Corollary A.1 and are able to integrate with any given
precision. The integration points are on equally spaced
radii and the integration weights are independent of an-
gular position (Gauss-Chebyshev rule in the h-direction).
For the two-dimensional solutions considered in Sect. 7, a
rather large number of integration points are used per disk
(6 integration points along each of 24 radial directions).

Boundary disk We categorize the boundary sectors into
two major groups depending on the angle /0 that the radii
joining the center of the disk to the two intercepts of the
disk on C make interior to the domain:

Type I sector: /0 � p (see Fig. 7) In Appendix A we state
the rule that allows us to perform numerical cubature on
this sector to any desired order of accuracy. But roots of
higher-order orthogonal polynomials for every boundary

Fig. 6a, b. An interior disk is shown in (a). In (b) we display the
integration points (schematically) corresponding to an accuracy
of order k=7. Note that the integration points are on equally
spaced radii and the integration weights are independent of
angular position

Fig. 5a, b. A domain W with a
spherical cavity of radius ri is shown.
Node I is placed at the center of the
cavity. The weight function, WI, at
node I has a support radius of rI. The
integration domain associated with
the node I is a spherical shell of inner
radius ri and outer radius ro
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sector need be evaluated. To circumvent this expense, we
propose an ``engineering solution'' and use Gauss-
Legendre quadrature in the h-direction.

Type II sector : /0 > p (see Fig. 8) This type of boundary
sector is more expensive to handle. We decompose a Type
II sector into a sector for which the rules of the Type I
sector can be used and a triangle as shown in Fig. 8b. For
the triangle we use a product rule based on Gauss±
Legendre quadrature.

7
Numerical examples
In this section we present numerical examples in one and
two dimensions demonstrating the above formulation. A
simple problem involving a bar with distributed loading is
solved in one-dimension, followed by a one-dimensional
high Peclet number ¯ow problem. In two-dimensions we
®rst solve a Poisson problem with mixed boundary con-
ditions and then two linear elasticity problems. Corre-
sponding to each distinct type of equation solved by the
MFS, a patch test was performed and the method passed
the patch test in each case.

7.1
The MFS in R1: a bar with distributed loading

7.1.1
Formulation
In R1 the ``spheres'' reduce to line-segments (as shown in
Fig. 9a). We solve the following problem of a bar of unit
length, subjected to a distributed loading:

d2u�x�
dx2

� f �x� � 0 in X � �0; 1�
u � us at x � 0

du

dx
� f s at x � 1

The parameters us and f s and the function f �x� are chosen
so that the analytical solution u is given by the following
expression:

u�x� � 1

2
xÿ x3

3

� �
� 2x� 1 :

The weight function de®ned in Sect. 2.1 is used to generate
the Shepard partition of unity. At each node I, the fol-
lowing shape functions were used;

fu0
I �x�;u0

I �x��xÿ xI�=rIg
to attain linear consistency. Figure 9a shows a plot of these
shape functions for a typical node within the domain. The
discretized equation corresponding to the Ith node and
mth degree of freedom is given by Eq. (6) where the in-
tegrals are

KImJn �
Z x2

x1

dhIm

dx

dhJn

dx
dx

fIm �
Z x2

x1

f �x�hIm dx

f̂Im�

0 for an ``interior sphere''

f shIm�x�1� for a sphere on the
Neumann boundaryPN

J�1

P
n2I

KUImJnaJnÿ fUIm for a sphere on the
Dirichlet boundary

8>>>>><>>>>>:
where

KUImJn � ÿ d

dx
hImhJn� �

� �
x�0

fUIm � ÿus dhIm

dx

� �
x�0

it being understood that x1 � max�0; xI ÿ rI� and
x2 � min�1; xI � rI�.

7.1.2
Numerical results
Both regular and arbitrary distributions of nodes have
been used to solve the problem. Figure 9b shows the result

Fig. 8a, b. Type II boundary sector (a) and the distribution of
integration points (b)

Fig. 7a, b. Type I boundary sector (a) and the distribution of
integration points (b)
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when six nodes are distributed regularly. Figure 9c shows
the solution when the same problem is solved using ®ve
nodes with arbitrary distances between them.

7.2
The MFS in R1: a high Peclet number flow problem

7.2.1
Formulation
We consider the following problem of steady state heat
conduction in one dimension with prescribed velocity v as
discussed in Bathe (1996). The temperature is prescribed
at two points, x � 0 and x � L and we intend to compute
the temperature in �0; L�. The governing differential
equation for the temperature, h, is

d2h
dx2
� Pe

L

dh
dx

in �0; L�

with the boundary conditions;

h � hL at x � 0

h � hR at x � L

where the Peclet number is de®ned as Pe � �vL�=a (a is
the thermal diffusivity of the ¯uid). The exact solution to
this problem is given by

hÿ hL

hR ÿ hL
�

exp Pe
L x

� �
ÿ 1

exp�Pe� ÿ 1
:

With increase in the Peclet number, the solution curve
shows a strong boundary layer at x � L. The solution
using a simple Galerkin ®nite element scheme leads to
severe numerical dif®culties and a variety of upwind-type
procedures have been proposed to solve the problem (see
Bathe, 1996). In this work we apply the MFS and simply
use as our local approximation spaces

V
h;p
I � spanf1; exp�Pe x=L�g :

7.2.2
Numerical results
Figure 10 shows the numerical solutions obtained using
the MFS, with quite arbitrarily spaced nodes, plotted on
the analytical solution curves for Pe � 1; 10; 20 and 50.
Due to the solution space chosen we expect a very accurate
response with no ``wiggles'', and this is the case, see
Fig. 10. It seems that the method of ®nite spheres has
signi®cant potential for the development of ¯uid me-
chanics solution schemes to solve two- and three-dimen-
sional ¯ow problems.

7.3
The MFS in R2: the Poisson equation
on the bi-unit square

7.3.1
Formulation
We consider a problem in a single ®eld variable de®ned on
R2. We seek a function u�x; y� satisfying the Poisson
equation

u(x)

Ω3

h30h20 h40

32 4

h31

Analytical
MFS

3.5

3.0

2.5

2.0

1.5

1.0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

3.5

3.0

2.5

2.0

1.5

1.0

u(x)

x x

Analytical

MFS

a

b c

Fig. 9a±c. A bar of unit length with dis-
tributed loading. In (a) a part of the bar is
shown with 3 nodes. The Shepard func-
tions hI0 (I= 2,3,4) are plotted at each
node. At node 3, a higher order shape
function h31= ((x-x3)/r3)h30 is also
plotted. The sphere at each node I (WI)
reduces to a line segment in one-dimen-
sion. In (b) and (c) the displacement ®eld
u(x) is plotted as a function of the dis-
tance along the bar corresponding to the
boundary conditions and loading given
in section 7.1.1. The numerical result in
(b) corresponds to a regular distribution
of 6 nodes on the bar while that in (c)
corresponds to an arbitrary distribution
of 5 nodes
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o2u

ox2
� o2u

oy2
� f �x; y� � 0 in X � �ÿ1; 1� � �ÿ1; 1�

subject to the boundary conditions (see Fig. 11)

u � us�x; y� on Ca

ou

oy
� 0 on Cb

ou

ox
� ÿf s�x; y� on Cc

ou

oy
� 0 on Cd :

The functions f �x; y�; f s�x; y� and us�x; y� are chosen such
that the analytical solution u�x; y� is

u�x; y� � �7x� x7� cos�py� :
The discretized equation corresponding to the mth degree
of freedom of the Ith node is given by Eq. (6) where the
integrals are

KImJn �
Z

XI\X

ohIm

ox

ohJn

ox
� ohIm

oy

ohJn

oy

� �
dX

fIm �
Z

XI\X
f �x; y�hIm dX

f̂ Im�

0 for an ``interior
sphere''

0 for spheres
on Cb and CdR

CcI
f shIm dX for a sphere on CcPN

J�1

P
n2IKUImJnaJnÿ fUIm for a sphere on Ca

8>>>>>>>><>>>>>>>>:

where

KUImJn �
Z

CaI

o
ox
�hImhJn�dC

fUIm �
Z

CaI

us ohIm

ox
dC

and Ca � [I2NaCaI and Cc � [I2NcCcI ;Na and Nc being
the index set of nodes whose spheres have nonzero in-
tercepts with the boundaries Ca and Cc respectively.

7.3.2
Numerical results
Figure 11 shows the discretization of the domain using a
regular arrangement of 36 nodes. In Fig. 12 we present the
MFS shape functions at an interior node. The nonpoly-
nomial nature of the shape functions is quite evident. In
Fig. 13a we present the MFS solution u�x� superposed on
the analytical one along two lines y � 0 and y � 1. In
Fig. 13b the solution u�y� (as computed by the MFS) is
shown as a function of the spatial coordinate y along the
boundary Ca (i.e. x � 1� together with the analytical
solution. Note that the essential boundary condition
prescribed along this boundary is exactly satis®ed at the
nodes but only approximately (in a weak sense) in-
between the nodes.

7.4
Linear elasticity problems in R2

7.4.1
Formulation
In this section we derive the weak form and the discretized
equations for a linear elastic continuum in 2D. The system

Fig. 11. A regular arrangement of 36 nodes is shown on the
domain on which the Poisson problem is de®ned. Some of the
interior disks as well as some type I boundary disks are also
plotted. Some selected integration points are shown for one of the
interior disks as crosshatched circles Ä (the actual number of
integration points used in this example was 144 per interior disk)

Fig. 10. Results of the high Peclet number ¯ow problem. The
normalized temperature distribution is plotted against normal-
ized distance along the ¯ow direction for four different Peclet
numbers (Pe = 1, 10, 20 and 50). Continuous lines correspond to
the analytical solution. The solution obtained using the method of
®nite spheres is plotted corresponding to arbitrary distributions
of nodes along the domain
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of governing differential equations and the boundary
conditions can be written as:

Equilibrium equations:

oT
� s� fB � 0 in X �9�

Strain±displacement relationships:

� � o�u in X �10�
Linear elastic constitutive relationship:

s � C� in X �11�
Boundary conditions:

Ns � f s on Cf �12�
u � us on Cu �13�
In the Eqs. (9) to (13), u, � and s are the displacement,
stress and strain vectors, C is the elasticity matrix, f s is the
prescribed traction vector on the Neumann boundary
Cf ; us is the vector of prescribed displacements on the
Dirichlet boundary Cu (note that the domain boundary
C � Cf [ Cu�; fB is the body force vector (including inertia
terms), o� is a linear gradient operator and N is the matrix
of direction cosine components of a unit normal to the
domain boundary (positive outwards). In R2 these vectors
and matrices are written as:

u � �u�x; y� v�x; y��T �14�
� � �exx eyy cxy�T �15�
s � �sxx syy sxy�T �16�
f s � �f s

x�x; y� f s
y �x; y��T

us � �us�x; y� vs�x; y��T

o� �
o=ox 0

0 o=oy
o=oy o=ox

24 35 �17�

N � nx 0 ny

0 ny nx

� �
�18�

C �
c11 c12 0
c12 c11 0
0 0 c33

24 35
where

c11 � E

1ÿ m2
; c12 � Em

1ÿ m2
and c33 � E

2�1� m�
for plane stress conditions

c11 � E�1ÿ m�
�1� m��1ÿ 2m� ; c12 � Em

�1� m��1ÿ 2m� and

c33 � E

2�1� m� for plane strain conditions

E and m being the Young's modulus and Poisson's ratio of
the material, respectively.

We have the following approximation for the displace-
ment ®eld

u�x; y� '
XN

J�1

X
n2I

HJn�x; y�aJn � H�x; y�U ; �19�

where

U � �a10 a11 a12 � � � aJn � � ��T
is the vector of nodal unknowns (not nodal displacements
unless the Kronecker delta property is satis®ed by the
shape functions), and

aJn � �u Jn v Jn�

Fig. 12a±c. Three shape functions (hI0, hI1 and hI2) at an interior
node are shown. hI0 is the Shepard function at the node, while hI1

= ((x-xI)/rI) hI0 and hI2=((y-yI)/rI) hI0
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is the vector of nodal unknowns at node J corresponding
to the nth degree of freedom (uJn and v Jn are the nodal
variables for the x and y direction displacements at node J
corresponding to the nth degree of freedom). The nodal
shape function matrix corresponding to the nth degree of
freedom is

HJn�x; y� � hJn�x; y� 0
0 hJn�x; y�

� �
: �20�

Hence, the discretized versions of Eqs. (10) and (11) are

��x; y� '
XN

J�1

X
n2I

BJn�x; y�aJn � B�x; y�U �21�

and

s�x; y� '
XN

J�1

X
n2I

CBJn�x; y�aJn � CB�x; y�U ; �22�

where the strain±displacement matrix B�x; y� in Eq. (21) is
partitioned as

B�x; y� � B10�x; y� B11�x; y� � � �BJn�x; y� � � �� �
where

BJn�x; y� � o�HJn�x; y� �
ohJn=ox 0

0 ohJn=oy
ohJn=oy ohJn=ox

24 35 :

�23�
At each node I, we may write the Bubnov±Galerkin weak
form corresponding to the mth degree of freedom as (from
Eq. (9))Z

XI\X
HImoT

� s dX�
Z

XI\X
HImfB dX � 0 : �24�

In 2D these are two equations corresponding to the two
coordinate directions. Applying Green's theorem and
Eqs. (22) and (23) we obtain the discretized system of
algebraic equationsXN

J�1

X
n2I

KImJnaJn � f Im � f̂ Im �25�

which is the vector form of Eq. (6). In Eq. (25), the various
matrices and vectors are as follows;

KImJn �
Z

XI\X
BT

ImCBJn dX �26�

f Im �
Z

XI\X
HImfB dX �27�

f̂ Im �
Z

CI

HImNs dC �28�

It is only this last Eq. (28) that is different for the different
types of spheres (disks) that we encounter.

If I is a node associated with an ``internal sphere'', then

f̂ Im � 0

from compact support.
If I is a node with an annular integration domain (see

Sect. 5), with internal boundary CIi and external boundary
CIo, then

f̂ Im �
I

CIo

HImNs dC�
I

CIi

HImNs dC : �29�
If I is a node on the Neumann boundary, then from
Eq. (12),

f̂ Im �
Z

CfI

HImf s dC �30�

where Cf � [I2Nf
CfI

, Nf being the index set of nodes
with spheres having nonzero intercepts on Cf .

If I is a node on the Dirichlet boundary, then

f̂ Im �
XN

J�1

X
n2I

KUImJnaJn ÿ fUIm �31�

where

KUImJn �
Z

CuI

HImNCBJn dC�
Z

CuI

BT
ImCNTHJn dC

�32�
and

fUIm �
Z

CuI

BT
ImCNTus dC �33�

where Cu � [I2Nu
CuI

, Nu being the index set of nodes
with spheres having nonzero intercepts on Cu. Note that
the stiffness matrix KU is symmetric.
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Fig. 13a, b. Results of the Poisson
problem. In (a) the ®eld variable u(x) is
plotted as a function of x for two values
of y (= 0, 1). In (b) the Dirichlet
boundary Ca is considered. The MFS
solution is plotted as a function of y
with the analytical solution 341



It is interesting to note that this formulation gives rise
to the same system matrices as obtained when the applied
displacements are introduced into a variational formula-
tion of the problem via Lagrange multipliers and the
Lagrange multipliers are replaced by their ``physical
signi®cances'' as described by Washizu (1975). This for-
mulation has also been adopted by Lu et al. (1994) in their

implementation of essential boundary conditions in the
context of the element free Galerkin methods.

Another point to note is that we may incorporate the
Dirichlet conditions by the special arrangement of nodes
on the boundary as discussed in Sect. 4.2.

Patch tests were performed on a bi-unit square (both in
plane stress and in plane strain conditions) using the
above formulation and they were passed with as few as
four nodes placed at the corners.

7.4.2
Numerical results

Thick walled pressure vessel in plane stress We consider
a thick-walled pressure vessel of external radius Ro�� 10�
and internal radius Ri�� 5�, subjected to uniform internal
pressure pi and external pressure po. The material prop-
erties of the cylinder wall are chosen as E � 100 and
m � 0:3. As shown in Fig. 14, one quadrant of the cylinder
is discretized. The nodes for all the disks are superimposed
at the origin. All nodes are associated with annular inte-
gration domains, and the integration annuli have the same
inner radius (Ri) but different outer radii. To be able to
incorporate the Neumann boundary conditions at Ro,
some annuli are chosen to have outer radii greater than Ro

(see Fig. 14). Figures 15 and 16 present results of two
numerical experiments. In the ®rst one (Fig. 15) po �
pi � 1:0: In the second experiment (Fig. 16) pi � 10 and
po � 0. The computed radial displacement ®eld is plotted
against the analytical solution in Fig. 16a. Figure 16b
shows the radial (rrr) and hoop (rhh) stresses normalized
with the internal pressure (pi). In this solution 12 nodes
were used.

Fig. 14. A quadrant of the thick-walled pressure vessel (in plane
stress). All the nodes are placed at the origin of the coordinate
system. The integration domain corresponding to each node is an
annular sector of inner radius Ri

Fig. 15a±d. Results of the pressure
vessel problem for pi=po=1.0. The
radial displacement (ur) , the nor-
malized radial stress (srr), hoop
stress (shh) and shear stress (srh)
are plotted along a radius of the
cylinder in (a), (b), (c) and (d)
respectively. Continuous lines
indicate analytical solution whereas
the MFS solution is plotted with
asterisks
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A cantilever plate in plane strain with uniformly
distributed loading In this problem we consider a canti-
lever plate in plane strain conditions as shown in Fig. 17a.
The material properties of the plate are chosen as E � 100
and m � 0:3. A uniformly distributed load of magnitude
w � 1:0 per unit length is applied as shown. Figure 17b
shows the convergence in strain energy when a h-type
uniform re®nement is performed. In this analysis the local
basis of each node has been chosen as a complete poly-
nomial of second degree. The strain energy of the limit

solution of the system is obtained by solving the same
problem using a 50� 50 mesh of 9-noded ®nite elements.
An order of convergence of 4.078 is observed which
compares very well with the theoretical value of 4. This
measured rate of convergence is much better than the one
obtained in the classical ®nite element analysis when un-
graded meshes are used, and might indicate a robustness
of the MFS.

8
Concluding remarks
The objective of this paper was to present some of our
latest developments in meshless methods. We reviewed
several existing meshless techniques and concluded that
none of the methods is effective for general applications.
However, we found the meshless local Petrov±Galerkin
(MLPG) method to be conceptually the most attractive. We
are therefore using this concept in our research to obtain
an effective meshless solution procedure.

In this paper we propose a specialized form of the
MLPG approach ± the method of ®nite spheres (MFS) ±
which appears to have many valuable attributes. The
method is truly meshless and the boundary conditions are
incorporated relatively easily, in particular when a special
arrangement of nodes on the boundary is used. Moreover,
a new technique for modeling doubly-connected domains
is presented in this paper using the concept of n-dimen-
sional spherical shells as integration domains. The solu-
tions of various example problems are given to
demonstrate the MFS.

An important feature of the method is the numerical
integration scheme used. We employ Gaussian product
rules for integration on two-dimensional annuli and
annular sectors. A generalization would be used in three
dimensions. The number of integration points employed
is, however, rather large compared to those used in the
conventional ®nite element method. This is attributed to
the fact that in the conventional ®nite element method the
functions to be integrated are polynomials (or mapped
polynomials) but in the MFS complicated rational (non-
polynomial) functions have to be integrated.

Considerable improvements in the choice of functions
and the numerical integration schemes must be achieved
before the method would become, in ef®ciency, compet-
itive with the existing ®nite element procedures. Such
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Fig. 16. (a) Radial displacement ®eld ur

and (b) normalized radial (srr� and
hoop (shh) stresses in the cylinder wall
corresponding to pi=10 and p0=0. Con-
tinuous lines indicate analytical solution
whereas the MFS solution is indicated by
asterisks (�), triangles �D�, or squares (h)

Fig. 17. (a) Cantilever plate (L=2.0) in plane strain. Uniformly
distributed load of magnitude w=1.0 per unit length is applied.
E=100, v=0.3. In (b) the convergence of the strain energy (Eh)
with decrease in radius of support (h) is shown. The strain energy
of the limit solution, E, is obtained by solving the same problem
using a 50 ´ 50 mesh of 9-noded ®nite elements
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ef®ciency improvements should be possible. In addition,
of course, tests and mathematical analyses of the method
should be performed. While these research tasks still
require signi®cant effort, we do believe that the MFS has
an excellent potential for applications in solid and ¯uid
mechanics.

Appendix A
Cubature on annular sectors in R2

In this appendix we state without proof a product cubature
rule for the integralZZ

X
f �x; y�dx dy�:

X
i

X
j

Dijf �xi; yj� �34�

with an accuracy of k. The region under consideration
is the annular sector with inner radius Ri and outer
radius Ro and angular span of �ÿho; ho� (see Fig. A1).
The dot over the equality signi®es that the relationship
is a strict equality if the function f �x; y� is a polynomial
of order at most k in x and y, otherwise it is an
approximation.

Cubature Rule If it is required that the rule in Eq. 34 have
accuracy k � 4m� 3, m � 0; 1; 2; . . . ; in x � r cos h and
y � r sin h, and if it is required to have a minimum
number of evaluation points which are taken at the
intersection of concentric arcs (radius rj) with rays ema-
nating from the origin (angle hi), then it is both necessary
and suf®cient for the existence of a unique set of weights
Dij 2 R that the following two conditions be satis®ed:

1. Let za be the �k� 1�=2 zeros of the polynomial pp�z�
of degree p � �k� 1�=2 which is orthogonal to all poly-
nomials of inferior degree on �ÿ1; 1� relative to the weight

w�z� � �1� z�ÿ1
2

3� cos ho

1ÿ cos ho
ÿ z

� �ÿ1
2

:

Let angular positions ua be de®ned by the following
relationship

cos ua �
1� cos ho

2

� �
ÿ 1ÿ cos ho

2

� �
za

a � 1; 2; . . . ; �k� 1�=2 :

Then the �k� 1� angular positions hi of the evaluation
points are given by

hi � ui i � 1; 2; . . . ; �k� 1�=2
ÿuiÿ�k�1�=2 i � �k� 3�=2; . . . ; �k� 1�

�
2. The radial positions of the evaluation points rj are the

positive square roots of the m� 1 zeros of Pm�1�r2�, the
Legendre polynomial in r2 of degree m� 1, orthogonalized
on �R2

i ;R
2
o�.

The (unique) weights Dij are equal to AiBj; where

Ai �
R 1
ÿ1 w�n��li�n��2 dn i � 1; 2; . . . ; �k� 1�=2R 1
ÿ1 w�n��liÿ�k�1�=2�n��2 dn i � �k� 3�=2; . . . ; �k� 1�

(

and

Bj � 1

2P0m�1�r2
j �
Z R2

o

R2
i

Pm�1�r2�
r2 ÿ r2

j

dr2 j � 1; 2; . . . ;m� 1 :

The functions li�z� being given as

li�z� � pp�z�
�zÿ zi�p0p�zi� :

An important corollary of this rule is the case when
ho � p, i.e. when we have internal disks or annuli. The
complicated polynomial pp�z� in the above rule reduces to
the well known Chebyshev polynomial of the ®rst kind and
the quantities hi and Ai are known in closed form. We state
the corollary formally:

Corollary A.1 For the special case of ho � p, the above
theorem yields the following cubature ruleZZ

X

f �x; y�dx dy�:
X4�m�1�

i�1

Xm�1

j�1

Cjf �rj cos hi; rj sin hi� ;

where

1. hi � �ip�=�2�m� 1�� ;
2. Cj � 1

�4�m�1�P0m�1�r2
j
��
R R2

o

R2
i

�Pm�1�r2��
�r2ÿr2

j
� dr2 ;

3. Pm�1�r2� is the Legendre polynomial in r2 of degree
m� 1, orthogonalized on �R2

i ;R
2
o�:

4. Pm�1�r2
j � � 0:

The case ho � p has been previously derived by Peirce
(1957a).
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