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Abstract

Virtual environments {VEs) that enable the user to touch, feel, and
manipulate virtual objecis through haptic interactions are expected
ta have applications in many areas such as medicine, CAD/CAM,
entertainment, fine arts, and education. The current state af tech-
nology allows the human operator to interact with viriual objects
through the probe (such as a thimble or a stylus) of a force-reflecting
haptic interface. Most of the current haptic interaction algorithms
model the probe as a single point and allow the user to feel the forces
that arise from point interactions with virtual objects. In this papes,
we propose a ray-based haptic-rendering algorithm that enables the
user io touch and feel convex polyhedral objects with a line segment
madel of the probe. The ray-based haptic-rendering algorithm com-
putes both forces and torques due ta collisions of the tip and/or side
of the probe with multiple virtual objects, as required in simulating
many tool-handling applications. Since the real-time simulation of
haptic interactions between a 3D tool and objects is computation-
ally quire expensive, the ray-based rendering can be considered as
an intermediate step toward achieving this goal by simplifying the
computational model of the tool. To compare the ray- and point-
based haptic interaction techniques in the haptic perception of 3D
objects, we conducted perceptual experiments in which the partici-
pants were asked to identify the shape of four different 3D primitives
(sphere, cone, cylinder, and cube} that were displayed in random
order using both point- and ray-based techniques. The results of the
study show that on average, 3D objecis are recognized faster with
ray-based rendering than with point-based rendering.

KEY WORDS—virtual reality, haptic interface, rendering al-
gorithm, force feedback, human-computer interaction
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Ray-Based Haptic
Rendering: Force and
Torque Interactions
between a Line Probe
and 3D Objects in
Virtual Environments

1. Introduction

Enabling haptic interaction with 3D objects in virtual envi-
ronments has been an exciting and challenging research topic
for scientists and engineers during the past few years (Srini-
vasan and Basdogan 1997). With the technology available
today, the user cannot get the complete sensation of directly
touching the virtual objects. Instead, the user touches and ma-
nipulates virtual objects through an end-effector of a haptic
interface device. This end-effector, referred to as a probe in
the sections below, could be a thimble in which the fingertip
could be inserted, a stylus or a mechanical tool that could be
held in the hand, or an actuated glove or exoskeleton that the
user could wear. Typical functions of the haptic device are
to acquire the position of the probe and reflect forces aris-
ing from interactions with the virtual environment back to
the user. For a given position information, collision detection
software checks whether the probe is inside the virtual objects
or not. If so, based on the shape and other physical proper-
ties of objects that are being simulated, it sends appropriate
force commands to the motors of the device. With proper
device design, suitable algorithms, and fast computations, it
is possible to convey to the user a natural feel of the static
and dynamic properties of objects (Salisbury and Srinivasan
1997).

In general, the physical probe can have different physical
shapes and designs, and the same is true of its representation in
probe-object collision detection and force response computa-
tions. However, for the feel of objects to appear natural to the
user, it has been generally observed that the force update rates
need to be of the order of kHz. Simplifications are therefore
necessary to reduce the computational burden associated with
collision detection and response. Most of the haptic rendering
techniques developed so far are point based in which the probe
is simply represented as a point. Zilles and Salisbury (1995);
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Ruspini, Kolarov, and Khatib (1997); Adachi, Kumano, and
Ogino (1995); Mark et al. (1996); Gregory et al. (1999); and
Ho, Basdogan, and Srinivasan (1999) have proposed point-
based interaction algorithms to render 3D polyhedral objects,
Avila and Sobierajski (1996) have proposed techniques to ren-
der 3D volumetric objects. Salisbury and Tarr {1997} have
proposed a method to render implicit surfaces. Thompson,
Johnson, and Cohen (1997) have proposed a method for ren-
dering NURBS surfaces. In all of the point-based rendering
techniques, the user is able to explore the shape, surface de-
tails, and material properties of the virtual objects through
the tip of the probe {Chen et al. 1997; Fritz and Barner 1996,
Green and Salisbury 1997; Minsky et al. 1990; Salcudean and
Vlaar 1994; Siira and Pai 1996; Basdogan, Ho, and Srinivasan
1997; Ho, Basdogan, and Srinivasan 1999). Since the probe
is represented by a point, the net force at that point is the only
haptic feedback variable that can be displayed to the user,
For exploring the shape and surface properties of objects in
VEs, these methods are probably sufficient and could provide
the users with similar {orce feedback as what they would feel
when exploring the obiects in real environments with the tip
of a stick.

Point-based methods, however, are not capable of simulat-
ing more general tool-object mteractions that involve single
or multiple objects in contact at arbitrary locations of the tool.
In such a context, both forces and torques displayed to the user
need to be independently computed. Furthermore, depanding
on the nature of the object in contact, the forces and torques
can be dependent on the orientation of the probe. To handle
such cases in the simplest possible manner, we propose ray-
based rendering where the probe is represented by a finite line
segment. In this algorithm, contact points, depth of penetra-
tion, and the distances from the contact points to both ends of
the probe are computed first, followed by the computation of
both the forces and torques that will be displayed to the user.
Thus, ray-based rendering provides a basis for displaying not
only the forces at the probe tip but also the forces and torques
that are appropriate for any number of contacts along the long
axis of the probe.

Modeling haptic interactions between a probe and objects
using ray-based technique has several advantages over the ex-
isting point-based techniques. First, side collisions between
the simulated tool and the 3D objects can be detected. The
user can rotate the haptic probe around the corner of the ob-
jectin continuous contact and get a better sense of the abject’s
shape. In point-based methods, one of the common unreal-
istic feelings is that the probe and the user’s hand can slice
through objects without any resistance as long as the probe
tip is outside the object (see Fig. 2). Ray-based rendering
eliminates such a situation. Second, the ray that represents
the probe can be extended to detect the collision path with
multiple layers of an object. This is especially wseful in hap-
tic rendering of compliant objects (e.g., soft tissue) or layered
surfaces (e.g., earth’s soil), where each layer has different ma-

terial properties and the forces/torques to be applied on the
user depend on the probe orientation. Third, it enables the
user to touch and feel multiple objects at the same time. If the
task involves the simulation of haptic interactions between a
tool and an object, ray-based rendering provides a more nat-
ural way of interacting with objects. Fourth, the reachable
haptic workspace can potentially be extended using this tech-
nique since we have the full control of forces and torques that
are displayed to the user. This means that it may be possible
to create an illusion of touching distant objects by virtually
extending the length of the probe and appropriately changing
the direction and magnitude of the reflected forces (similar to
seeing distant objects with a flashlight, see Fig. 3b).

The advantage of ray-based rendering over point-based
rendering is quite apparent in some applications. For exam-
ple, in performing minimally invasive surgeries, the surgeon
inserts thin long rigid tubes into the body of the patient through
several ports. Small instruments attached to these tubes are
used for manipulating the internal organs. During the surgery,
the surgeon accesses the targeted area by pushing the organs
and surrounding tissue aside using the instruments and feels
both the interaction forces and torques. A point-based tech-
nique is inadequate to fully simulate such haptic interactions
between surgical instruments and virtual organs. If the in-
strument is modeled as a single point, the side collisions of an
instrument with organs will not be detected and the instrument
will pass through any organ other than the one touching the
tip. We have observed that ray-based rendering significantly
improves the realism of the simulation of haptic interactions
between laparoscopic instruments and organs (Basdogan et al.
1998). In addition, multilayered and damaged tissues whose
reaction forces depend on the tool orientation can be simu-
lated better using the ray-based technique if the ray is extended
through the contacted surface and muoltiple ¢ollisions with the
layers of the virtual object are detected to compute interaction
forces.

Another example where the ray-based rendering is prefer-
able would be the simulation of assembly line in car manu-
facturing. A scenario may involve a mechanic going under
a virtual car and turning the nuts of an engine block. Some
of these procedures are done through mechanical instruments
attached to a long and rigid shaft that enables the mechanic to
reach difficult areas of the engine. Typically, the view of the
workspace is limited and the mechanic finds his way around
using haptic cues only. Moreover, the path to the nuts is usu-
ally blocked by several other mechanical components, which
makes the haptic task even tnore chalienging. The simula-
tion of this procedure in virtual environments will certainly
involve correct computation of torques and detection of mul-
tiple collisions simultaneously since a long rigid shaft is nsed
to reach the targeted arcas.

Although single-point interactions are not sufficient for
computing the correct forces and torques generated due to
contact between 3D objects, a group of points can sofficiently
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approximate the contact conditions. For example, McNeely,
Puterbaugh, and Troy (1999) presented a voxel-based ap-
preach for 6-DoF haptic rendering with applications in the
design for assembly and design for maintenance. In their ap-
proach, static objects in the scene are divided into voxels and
the probe is modeled as a set of surface points. Then muliiple
collisions are detected between the surface points of the probe
and each voxel of the static ohject to reflect forces based on a
taugent-plane force model. A tangent plane whose normal is
along the direction of the collided surface point is constructed
at the center of each collided voxel. Then, the net force and
torgue acting on the probing object is obtained as the summa-
tion of all forceftorgue contributions from such point-voxel
intersections. Although this approach enables 6-DoF haptic
interactions with static rigid objects, its extension to dynam-
ical and deformable objects would significantly reduce the
haptic update rate because of the computational load. More-
over, rendering of thin or small objects will have difficulties
with this approach.

In this paper, we have further improved and extended the
ray-based rendering concept proposed in our carlier studies
(Basdogan, Ho, and Srinivasan 1997} to include the com-
putation of torques and modeling of various contact condi-
tions, Moreover, the haptic rendering rate was significantly
improved using hierarchical trees and a local search tech-
nique. Since the probe is modeled as a line segment, the
proposed ray-based rendering method requires a haptic de-
vice that is capable of sensing at least 5 DoF (3 positions
and 2 orientations) and delivering 5 degrees of force feed-
back (force feedback along 3 axes and torque feedback about
2 axes), To display torques as well as forces to the user, we
have connected two commercially available force-feedback
devices (PHANTOM from SensAble Technologies, Woburn,
MA) to each other through a rigid probe. The result is similar
to that achieved by Iwata (1993). With this extension, the
haptic feedback conveyed to the user can be any combination
of force and torque (see Fig. 1).

In the next section, we first describe our setup for display-
ing forces as well as torques to the user. We then introduce the
concept of haptic rendering with a line segment in Section 3.
Our collision detection algorithm for detecting collisions be-
tween a line segment model of the probe and the 3D convex
objects is described in Section 4. In Section 5, we discuss
the collision response phase that mainly deals with the com-
putation of interaction forces and torques. In Section 6, we
present an experimental study that 1s aimed to investigate the
difference between point- and ray-based rendering techniques
in perceiving the shape of 3D objects. The results and con-
clusions of the study are summarized in Section 7.

2. Hardware Setup

To implement our algorithm, we have put together a setup that
is capable of displaying torques as well as forces (see Fig. 3).

The haptic devices designed by Millman and Colgate (1991),
Twata {1993), and Buttolo and Hannaford (1995) are exam-
ples of such devices. The haptic device that we have used
in our simulations is a commercial product available in the
market (PHANTOM from SensAble Technologies, Woburn,
MA). Bach of the Phantoms we used can sense six degrees of
position information but reflect forces along three axes only
{i.e., torques cannot be displayed}. However, if two Phan-
toms are connected to each other through a rigid probe, then
a 5-DoF force/torque display can be obtained (see Fig. 3).
This configuration, which runs on a PC platform (a dual 300
MHz Pentium Il processor), is the one we used to implement
ray-based rendering and to conduct experiments described in
this paper. The software code for visual and haptic rendering
of 3D polyhedral objects made of triangles is written with
Open Inventor Graphics Tool Kit (TGS Tnc.) and C++ pro-
gramming language. Multithreading techniques were used to
synchronize the visual and haptic loops to run the simulations
in an efficient manner (Ho, Basdogan, and Srinivasan 1999).

3. Ray-Based Haptic Interactions

Inray-based rendering, we model the generic probe of the hap-
tic device as a line segment and then detect collisions with 3D
objects in the scene to compute the interaction forces/torques.
As mentioned in the previous paragraphs, the existing haptic
rendering techniques only consider the point-based interac-
tions that take place between the end point of the haptic device
and 3D virtual objects. Inthe point-based case, the pointprobe
and virtual object can only have point-vertex, point-edge, or
point-polygon contacts (Ho, Basdogan, and Srinivasan 1999).
However, the type of contacts between the line segment model
of the haptic probe and virtual object can, in addition, be Jine
segment-edge and line segment-polygon. There can also be
multiple contacts composed of a combination of the above
cases.

To compute the force to be reflected (o the users, it is
necessary to know which face of the object was penetrated.
Hence, one has to consider the history of the probe’s move-
ments for proper collision response to the user in haptic ren-
dering, which is one of the main differences from graphi-
cal rendering. Although this means the tracking of probe’s
tip position in the point-based interactions, the tracking of
probe’s orientation has to be considered as well in ray-based
interactions. Therefore, the detection of collisions between
a line-segment model of a haptic probe and arbitrary shaped
3D objects (i.e., convex and concave) is more complicated
and computationally more expensive than that of point-based
interactions. However, the advantages of the ray-based ren-
dering over the point-based techniques that are mentioned in
the intraduction section were quite appealing to us. We have
developed a rule-based algorithim that can successfully han-
dle the collision conditions between a line segment model of
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Fig. 1. Schematic of our haptic display: To display forces and torques to the user, we have connected two force feedback
devices to each other through a rigid probe. This enables us to display forces in three axes and torgues about two axes (the
torsion about the long axis of the probe cannot be displayed with this design).

Real World Point-Based Ray-Based

£ )

Fig. 2. The difference in point- and ray-based rendering techniques: In point-based rendering, the haptic probe is modeled as
a single point leading to artifacts such as feeling the bottom surface of the object by passing through the object. In ray-based
rendering, collisions between virtual objects and end-points as well as side of a line segment are detected.



672 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2000

1

Fig. 3. (a) Our two-Phantom setup for displaying forces and torques to the user by employing the ray-based haptic rendering
algorithm. (b) The concept of touching and exploring distant objects by using the ray-based rendering algorithm to extend the

length of the haptic probe virtually,

a haptic probe and triangular convex objects. Although the
algorithm can successfully render only convex objects at this
stage, we do not consider this as a major limitation since the
concave objects can be divided into several convex objects.

In general, three types of collisions occur when a convex
object is explored with a line probe: (1) either end of the probe
contacts with a polygon (we use triangles in our implementa-
tion) of the polyhedron and the intersection is a single point
(point-polygon, see Fig. 4a); (2) the probe collides with an
edge of the polyhedron and the intersection is a single point
that is between the end points of the probe (line segment-edge,
sec Fig. 4b); (3) the probe is perfectly parallel to a polygen
or a set of polygons of the object in contact, and the intersec-
tion is a portion of the probe (line segment-face, see Fig. 4c).
Other types of contacts such as point-vertex, point-edge, and
line segment-vertex are very unlikely to happen and will be
covered by the three contact types mentioned above because
the boundaries are included in the definition of an edge or a
face.

For haptic rendering of objects in VEs, in addition to col-
lision detection, a “collision response” phase has to be con-
sidered to calculate and reflect reaction forces and torques to
the user. To better describe the steps of the collision response
phase, we refer to three different definitions of the haptic probe
in the text: (1) real probe, the physical piece that is held by
the user; (2) virtual probe, the computational model of the
probe (i.e., line segment model) that is defined by the tip and
tail coordinates of the real probe; (3) ideal probe, the ideal
location of the virtual probe that is constrained to stay on the
surface when the virtual one penetrates the object (similar to
the “God-Object” proposed by Zilles and Salisbury 1995). As
we manipulate the physical probe of the haptic device in the
real environment, the line segment model of the probe (i.e.,
virtual probe) that is defined by the end points of each Phan-
tom is updated at each servo loop. The collisions of this line
segment with the virtual objects are then detected. Although

the line segment model of the virtual probe can be anywhere
in 3D space, the movements of the ideal probe are restricted
such that it cannot penetrate into objects. The location of the
ideal probe relative to the virtual one is displayed in Figure 5
for each contact condition.

To properly distribute the forces to each force feedback
device, we need to know the point of contact on the ideal
stylus (see Fig. 5). The net moment is computed with respect
to this point to distribute the forces. The location of this point
on the ideal stylus changes with respect o the contact type.
For example, in point-polygon collision (Fig. 5a), the contact
point coincides with the tip point of the ideal probe. On the
other hand, in line segment-face contact (Fig. 5¢), the location
of the equivalent contact point depends on the portion of the
probe that is in contact with the surface. The details of the
collision detection and the response phases are described in
the following sections.

4. Collision Detection

At present, we have constrained the ray-based rendering
method to handle only convex objects in order to simplify the
computations. In fact, this simplification permits us to use our
local search technique (called “Neighborhood Watch™) that is
described in our earlier studies (Ho, Basdogan, and Srinivasan
1999). Finding the constrained position and orientation of the
ideal probe using a localized neighborhood search makes the
rendering rate independent of the number of polygons. In
addition, we construct two types of hierarchical databases
for each object in the scene to detect collisions faster: (1) a
bounding-box and (2) a neighborhood-connectivity hierarchi-
cal tree. (Similar technigques have been extensively used in
computer graphics, such as by Lin 1993; Gottschalk, Lin, and
Manocha 1996; Cohen et al. 1995.) The bounding box hierar-
chy is used for detecting the first collision between the virtual
probe and virtual objects. The neighborhood connectivity
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(a) (b) (c)

Fig. 4. Possible contact conditions for the line segment-convex object interactions: (a) the probe contacts a polygon of the
object at a single point (point-polygon), (b) the probe intersects an edge of the convex object at a single point (line segment-
edge), (c) the probe stays on the surface of a plane constructed from a single or multiple polygons, and the intersection between
the probe and the plane is either a portion or ail of the probe (line segment-face).

Ideal Contact

point Equivalent

Contact point

Contact

pOiIlt - Virtual
~ Probe

ASANUARNNCANN

(@) (b) (c)

Fig. 5. Location of ideal probe relative to the virtual one for the contact conditions shown in Figure 4. Although the virtual
probe can penetrate into objects, the ideal one is restricted to stay outside the objects. During the interactions, the collisions
of the virtual probe with objects are detected and the collision information is used to calculate the location of the ideal probe.
The stretch of the spring between the ideal and virtual probes in the figure illustrates a method for computing force interactions
between the probe and the convex object for three different contact conditions.
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is used to perform local searches for finding the subsequent
contacts, which significantly reduces the computational time.
Once the contact type is identified, we can compute the reac-
tion forces using the “collision response” method described
in Section 3.

In general, the collision detection phase between the virtual
probe and a virtual object is composed of two cases: the probe
did or did not have a collision with the object in the previous
loop. Once this is known, the following steps are followed to
detect the subsequent contacts:

a) If there was no contact with the object in the previous
cycle, we first check (1) if the movement of end points
of the line probe causes contact with any polygon of the
object (see the appendix, Section 7, for details), or (2)
if the movement of the line probe crosses any edge of
the object (see the appendix, Section 8, for details). To
speed up the collision detection calculations, we create
two separate hierarchical trees (i.c., for the polygons
and the edges of the object, respectively) for each poly-
hedron in the scene during the precomputation phase.
Atthe top of the hierarchy is a bounding-box that covers
the whole object. All of the geometric primitives inside
the bounding-box are then separated into two groups
based on their geometric centers (Gottschalk, Lin, and
Manocha 1996). We then create a bounding-box for
each group. These two new bounding-boxes are placed
under the first bounding-box in the hierarchy. We re-
peat the same process to create two children for each
parent at each hierarchical level of the tree until there is
only one primitive left in each bounding-box. To detect
a collision, we first check if the line probe is inside the
top-most bounding-box of the hierarchical tree. If so,
we then check the collisions with the bounding-boxes
at the second level. This process is repeated until the
lowest level is reached by progressing along a partic-
ular branch of the tree, Finally, we check if the line
probe coilides with the primitive itself (i.e., polygon or
edge) that is inside the lowest-level bounding-box of
this branch. If either of the end points of the virtual
probe penetrates a polygon, we have a point-polygon
collision. If the virtual probe crosses any edge, we en-
counter line segment-edge collision.

b) If there was a certain type of contact with the object
in the previous cycle (i.e., continuation of the previ-
ous contact} such as point-polygon, line segment-edge,
or line segment-face, we then study all the possible
contact conditions for the upcoming loops. For ex-
ample, if the contact type in the previous cycle was
point-polygon, then the possible contact conditions for
the current loop can be point-polygon, line segment-
edge, or line segment-face. Each contact condition and
the possible contact conditions that may follow it are
discussed in detail below.

1. If there was a point-polygon collision in the previ-

ous loop: The first step is to update the vector that
defines the probe. A line segment that connects
the end points of the probe defines this vector (V'),
and its direction is from the end that was in contact
with the object in the previous loop to the other
end point (see Fig. 6). We then calculate the dot
product of V and the normal (N) of the polygon
that was contacted in the previous loop.

1) Ifthe dotproductof the collided polygon nor-
mal (N) and the vector (V) is larger than zero
(i.e., if the angle between these two vectors
is less than 90 deg), we first project the col-
lided end point of the probe to the plane of
the previously collided polygon (see the ap-
pendix, Section 1) and then check if the pro-
jected point is still inside the same polygon
in the current loop. If so, the type of contact
condition in the current servo loop is a point-
polygon collision again (Fig. 7a). If not,
the probe could have a point-polygon col-
lision with a neighboring polygon (Fig. 7b)
or have a line segment-edge collision with a
neighboring edge (Fig. 7¢). If the collided
end point is above the surface containing the
polygon, then there is no collisicn in the cur-
rent cycle. .

i1} If the dot product of (1_\‘r } and ( 17) is smaller
than zero, we encounter a line segment-face
contact (Fig. 7d),

2. If there is a line segment-edge collision in the

previous loop: First, we find the projection of
the probe on a plane that contains the previ-
ously contacted edge and whose normal is per-
pendicular to the probe (see the appendix, Sec-
tion 4, for details). Then, we check whether the

Fig. 6. A point-polygon collision: In this figure, one end of
the probe is already inside the object whereas the other end
point is outside the object.
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(b)

projected probe has an intersection with the pre-
viously collided edge. In addition to this check,
we also define two angles (o and B} to describe
the collision status of the probe with the edge (see
Fig. 8a). Each edge primitive in the database has
two neighboring polygons. The angle £ is the an-
gle between the first polygon (arbitrarily chosen)
and the extensien of the second polygon (see Fig.
8a). Similarly, the angle « is the angle between
the first polygon and the probe.

i) If the value of o is larger than zero and
smaller than the value of § and the projec-
tion of the probe (see the appendix, Section
4) has an intersection with the edge of the
object, the probe should still be in contact
with the same edge. If the probe is above the
edge, then there 1s no contact.

ii) If the value of o is larger than zero and
smaller than the valve of £ and the projec-
tion of the probe (see the appendix, Section 4)
does not have an intersection with the edge,
the probe should either have a line segment-
edge collision (see Fig. 8b), a point-polygon
collision (see Fig. 8¢), or no collision at all
in the upcoming loop.

(d

Fig. 7. Possible contact types following a point-polygon collision: {a) point-polygon, (b) point-neighboring polygon, (c) line
segment-edge, and (d} line segment-face.

iii} If the value of o is smaller than zero or larger
than the value of 8, we infer that the probe
has a line segment-face contact with a neigh-
boring face.

3. If there is a line segment-face collision in the pre-

vious loop: We have already discussed the cases
in which the tip of the probe penetrates the ob-
ject (point-polygon) and the probe collides with
the edge of the object {line segment-edge). How-
ever, there is a situation, for example, in which
a part of the probe may be on the surface of the
ohject. Or, when we touch the surface of a convex
object with the tip of a probe and then rotate the
probe around the contacted polygon in continuous
contact: first, a single-pointcontact occurs (point-
polygon), then the probe becomes parallel to the
contacted surface of the object. We call the phase
described in these examples as line segment-face
where the term face refers to the face that is con-
structed from the collided polygon (i.e., since the
probe lies on the surface of the object, it could
be in contact with multiple polygons}. For the
detection of line segment-face contact, we first
define an angle (@) that is between the probe and
the face (see Fig. 9). We then check whether the
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Front View

Front View

b)

Py

Fig. 8. Possible collision situations following a linc segment-edge contact.

Fig. 9. Line segment-face collision.

projection of the probe on the plane of the face
(see the appendix, Section 3} still has a collision
with the face or not.

D)

ii)

iii)

If the vatue of @ is smaller than a user-defined
small angle epsilon (set at, say, 1 deg) and the
projection of the probe (see appendix, Sec-
tion 3) has a collision with the face, the probe
should be in contact with the same face, If
the probe is above the face, then there is no
contact,

if the value of £ is larger than epsilon and the
projection of the line probe (see appendix,
Section 3) has a collision with the face, the
type of contacts can be a point-polygon (see
Fig, 10a), line segment-edge (see Fig. 10b),
or no collision at all.

If the projection of the probe (see appendix,
Section 3) does not have a collision with the
face, we trace the path of the probe and find
out which direction the probe moves out of
face. Based on this direction, we determine

whether the probe has a point-polygon colli-
sion, aline segment-edge collision, or no col-
lision at all. To determine the type of contact,
we use the direction of the movement in the
following manner: (a) If the probe moves out
of the face from an edge, we check if the end
points of the probe are below the neighbor-
ing polygon of this edge. If so, then there is
a point-polygon collision (see Fig. 11), oth-
erwise there is no colliston. (b) If the probe
moves out of the face through a vertex, we
check if the probe is below any of the neigh-
boring edges of the vertex (see Fig. 11). If so,
then there is a line segment-edge collision.
To quickly determine the unqualified edges
(i.e., a vertex can have muitiple neighbor-
ing edges) in which the probe cannot possi-
bly collide, we consider an imaginary plane.
This plane contains the vertex in considera-
tion, and its normal is determined using the
closest vector from the vertex to the projected
probe {i.e., the probe is projected to the plane
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Fig. 10. Possible future contacts if & becomes larger than epsilon and the projection of the line probe has a collision with the
face in line segment-face contact: (a) point-polygon, (b) line segment-edge.

£
e

Fig. 11. Possible contact types if the projection of the probe
(see appendix, Section 3) does not have a collision with the
face when there is a line segment-face contact in the previous
cycle: (a) point-polygon and (b) line segment-edge.

—

v

of face). If the neighboring edges of the ver-
tex are behind this imaginary plane, then we
do not consider them for a possible collision.

5. Collision Response

In haptic rendering, collision response involves the compu-
tation of the ideal probe location refative to its virtual coun-
terpart and the reaction forces/torques that arise from interac-
tions with 3D ohjects. Although the collision response phase
has been studied in computer graphics (Baraff 1994; Mirtich
and Canny 1995; Moore and Wilhelms 1988), the computa-
tions relevant to haptics are quite different (Ho, Basdogan,
and Srinivasan 1999).

* The location of the ideal probe relative to the current
location of the virtual probe: The probe that is held by
the user is free to move anywhere in 3D space until its
motion is constrained by force feedback or workspace
boundary of the device. Since the virtual probe is al-
lowed to penetrate into objects for the purpose of de-
tecting collisions, we have to compute the location and
orientation of the ideal probe for the calculation of
forces/torques (see Fig. 5).

« Computation of forces and torques that will be dis-
played to the user: During haptic interactions with vir-
tual objects, the computer sends force commands to the
haptic device. This prevents the user from further pen-
etrating into the objects. The forces and torques are
computed based on the differences in the locations of
the virtsal and ideal probes,

The computation of ideal probe location and the interaction
force depends on the type of contact. Each contact case is
studied in detail below.

* In point-polygon collision, we first determine the sur-
face point on the collided polygon that is nearest to the
end point of the virtual probe. Then, the virtual probe is
projected to this nearest surface point to define the new
position of the ideal probe while keeping its orientation
the same as the virtual probe. Following the projection,
the nearest surface point and the end point of the ideal
probe coincide. This nearest surface point is called the
contact pointin Figure 5a since it enables us to compute
interaction forces and torques. We assume that there is
a virtual spring between the contacted end points of
the virtual and ideal probes (see Fig. 12a). The forces
and torques are then computed based on the spring con-
stant and the position difference between the virtual and
ideal probes (see Ho, Basdogan, and Srinivasan 1999
for details).

* In line segment-edge collision, we first determine the
plane that contains the collided edge and is parallel
to the virtual probe. The virtual probe is projected
to this plane (see appendix, Section 4) to define the
new position of the ideal probe. We then compute the
intersection point of the collided edge and the ideal
probe, which is called the contact point in Figure 5b.
To compute the pet interaction force, we assume that
there is a virtual spring between the virtual and ideal
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(a)

(b)

Fig. 12. The collision response for ray-based haptic rendering: The ideal location of the probe is determined based on the type
of collision (i.e., point-polygon, line segment-edge, or line segment-face). In the figure, dashed and solid lines represent the

virtual and ideal probes, respectively.

probes (see Fig. 12b). The net force is then distributed
appropriately to the two Phantoms to display them to
the user:

L=

= L2 - =
P = f et (1)

Fy = —Faet,
1 1 net

where L is the total length of the stylus (L1 + L3), f':l
and F; are the forces reflected from the two Phantom
devices, and Fpg is the net reaction force computed
using, say, a spring-based force model (i.e., Hook’s
law).

* In line segment-face collision, a part of the ideal probe
lies on the surface of the object while the virtval one
penetrates into the object. If the user rotates the probe
even slightly, the type of contact may quickly change
to point-polygon or line segment-edge. This is undesir-
able since it can cause instability. For this reason, the
orientation of the probe relative to the object surface
{angle & in the Fig. 9) plays an important role in com-
puting the equivalent contact point where the net force
is acting, We first determine the boundary points of the
face that collides with the probe (note that the probe in-
tersects the boundaries of the face at two points, which
are marked as A and B in Fig. 12¢). We then compute
the distances from one end of the probe to these points
(x1 and x3 in Fig. 12¢). Now, we can compute the loca-
tion of the collision point where the net force is acting
as follows:

x1+12) ( @ )(xl—xz)
L= + )
: ( 2 eepsilon 2

where, Ly = L — L, and the angle @ is defined as
the current orientation of the probe relative to the col-
lided and it varies between —6;psilon and Bepsiton- In our
simulations, @zpsilon Was chosen as one degree. For ex-
ample, observe the collision response phases in Figure
12¢: If# is equal to 8epsijon, then Ly becomes equal to x;
and the equivalent contact point moves to point A and
the contact phase switches to line segment-edge. Simi-
larly, if 8 is equal to —6,psiion, then L1 becomes equal to
x2. The equivalent contact point moves to point B and
the contact phase switches to line segment-edge. For
& between —Bgpsilon and Gepsiton, L1 will have a value
between x; and xa.

Following the computation of L and L, the force that will be
reflected from each Phantom can be easily determined using
eq. (1).

In the situations above where contact with a single object
is considered, the user will feel both forces and torques when
grasping the probe at any point other than the contact point.
Similarly, the user will in general feel torques as well as forces
when there are multiple objects to interact in the scene and the
movement of the probe is constrained. For example, if there
are two convex objects and the user attempts to touch both
of them at the same time as it is schematically described in
Figure 13 and illustrated in an example in Figure 14, a certain
amount of torque and force will be felt. The net force (Fpe)
that will be reflected to the user’s hand under this situation will
be the vector summation of the forces 72 and F* (see Fig. 13).
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Fig. 13. Compuiation of interaction forces/torques when the ling probe interacts with two virtual objects: The forces are
distributed to the Phantoms based on the net force and moment principles.

Fig. 14. The floating dumbbells: The user can touch, explore, and manipulate two dumbbells at the same time with a single

probe using the ray-based rendering technique.

The net torque acting on the user’s hand is computed as
Thand = F2 x 79 + F? x 7P (3)

The component of the force F? that will be reflected from
Phantom 1 and Phantom 2 can be computed using eq. (1) as
- Lry+r® o =, Li—r%
Fr=Zife Bp=TFL @
Similarly, the force FP is distributed between the two Phantom
devices as

L1+rb “h

= -——F" &)

b
Lo—r = =
2 L

b
By = 2 —F,

6. An Experiment on the Haptic Perception
of 3D Objects: Ray-Based versus
Point-Based Interactions

To compare the effectiveness of the proposed haptic-rendering
algorithm over the existing point-based rendering techniques

in perceiving the shape of 3D objects, we designed and con-
ducted a perceptual experiment. A total of 7 participants
participated in the experiment. Participants were asked to
identify the shape of 3D objects as quickly as possible us-
ing haptic cues only (i.e., no visual feedback was provided to
the participants). Four primitive objects (i.e., sphere, cone,
cylinder, and cube), rendered either with the point-based or
the ray-based technique, were randomly displayed to the par-
ticipants, one at a time and in various orientations. Each
participant repeated the experiment for 304 times (i.e., each
object was displayed 76 times) under each of the two differ-
ent conditions for haptic interactions (i.e., point-based versns
ray-based). We measured the total time each participant took
to identify an object and then compared the results for point-
based versus ray-based rendering conditions. The results in-
dicate that haptic perception of 3D objects with the ray-based
technique is faster than the point-based for the cone and cube
(see Fig. 15). This is possibly because (a} the sphere and
cylinder can be efficiently identified solely by exploring them
with the probe tip and (b) the cone and cube can be identified
faster when side collisions with the probe are rendered.
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Fig. 15. Comparison of the point- and ray-based rendering techniques: The use of the ray-based technique leads to a faster
perception of cone and cube (on the average, 22% and 11% faster than point-based, respectively). However, there were no

significant differences for the sphere and cylinder,

7. Discussion and Conclusions

In this paper, we have proposed a ray-based rendering tech-
nigue for simulating the haptic interactions between the end
effector (i.e., probe) of a haptic interface and 3D virtual ob-
jects. In contrast to the point-based approaches that model
the probe as a single point, the ray-based rendering technique
maodels the probe as a line segment. Although the point-based
approach simplifies the computations, it only enables the user
to feel net forces due to contact with the probe tip. The ray-
based haptic-rendering algorithm computes both forces and
torques due to collisions of the tip and/or side of the probe
with multiple virtual objects, as required in simulating many
tool-handling applications. Moreover, as our experimental
study demonstrates, the haptic perception of some 3D objects
using the ray-based rendering technique is better than the ex-
isting point-based techniques when there are no visual cues
available. Although the ray-based rendering algorithm de-
scribed in this paper is for convex polyhedral objects only,
it is capable of handling concave objects as well if they are
represented as a combination of multiple convex objects. We
have, for example, successfully rendered concave 3D objects

using the ray-based rendering technique (see Figs. 14, 16,
and 17).

The ray-based rendering algorithm can be superior to the
point-based techniques in many applications. If we need to
explore an interior surface of an object where visual cues are
limited or if the interaction torques are important in executing
a task as in assembly planning and design, ray-based render-
ing would be advantageous. Moreover, the ray-based render-
ing can be considered as an intermediate stage in progress
toward the full 6-DoF haptic rendering. Since modeling of
the haptic interactions between arbitrary-shaped 3D objects is
computationally too expensive (especially in interacting with
dynamical or deformable objects with a 3D haptic probe), an
intermediate step for rendering both forces and torques will
be helpful. For example, the computaticnal model of a 3D
mechanical tool can be easily constructed from a few line seg-
ments to achieve faster haptic rendering rates (see Fig. 17a).
We have achieved real-time update rates for rendering dy-
namical and deformable objects using ray-based rendering,
which would not be possible if full 3D object-cbject interac-
tions were considered (see Fig. 17b).
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Fig. 16. The flying rocket; The ray-based rendering technique has been used to manipulate a rocket with concave parts that

have been subdivided into multiple convex parts.

Fig. 17. (a) Haptic interactions between a mechanical tool and an engine block were simulated using the ray-based
rendering technique. The engine block is made of convex objects, and the mechanical tool is modeled as two line segments
shown in white. (b) Haptic interactions between surgical instruments and flexible objects were simulated using the ray-
based technique. The computational model of the surgical instrument seen in the figure consists of the three white line segments.

Appendix

1. Projection of a Point to a Plane

Given a point p, a plane with a unit normal N and another
point pg on the plane, the projected point p’ of point p on the
plane is calculated as

P =p+{(po— p).NIN. (6)

2, Distance between a Point and a Plane

Given a point p, a plane with a unit normal N and another
point pg on the plane, the distance between the point p and
“the plane is calculated as d = ||(Po — P) - N|.

3. Projection of a Line Segment to a Plane

Cjiven a line segment (P;, Pp), a plane with a onit normal
N and another point pg on the plane, we want to calculate

the projected line segment (P, P;) of the line segment (P,
Pp,) on the plane, Use the method mentioned in Section 1 of
the appendix to project the point P, to the plane and obtain
the projected point P,. In the same way, we can obtain the
projected point P, of the point P,. Then, the line segment
(7, P,;) is the projection of the line segment (P,, Fp) onto
the plane.

4. Projection of a Line Segment to a Plane Parallel to the
Line Segment and Containing Another Line Segment

Two line segments (P, Pp) and (P, Py)are defined in the 3D
space. First, we find a vector (N) that is perpendicular to the
two line segments {P,, Pp) and (P;, Py) (i.e., cross productof
two vectors (P,, Py)and (., Py))and normalize it. Theplane
parallel to the line segment (Fy, Pp) and containing the line
segment (P., Py) will have the unit normal N and the point
P.. Use the method mentioned in Section 3 of the appendix
to project the line segment { P, Pp) onto this plane and obtain
the projected line segment (P, Py).
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5. Intersection Point between a Line and a Plane

Given a line segment (F;, Pp) and a plane with a unit normal
N and another point Py on the plane, we want to find out the
intersection point between this line segment and the plane.
First, we cjleck the signs of dot products (£, — Py)N and
(P — Pg)N. If any of them is equal to zero, then at least one
of the points is on the plane. If both of them have the same
sign, the two points P; and P are on the same side of the
plane and, therefore, there will be no intersection point. If the
signs are different, we calculate the distances from the points
P, and P, to the plane (say, d1 and dz, respectively). The
intersection point will be {(da x P, +d1 x Pp)/(dy + da).

6. Nearest Distance between Two Line Segments in 3D space

Two line segments (F,, Fp) and (P, Py} are defined in the
3D space. We want to calculate the nearest distance between
the two line segments. First, we project the line segment
(P, Pp) to a plane that is parallel to the line segment (£,
Py and contains the line segment (P,, Py) using the method
mentioned in Section 4 of the appendix, which will be (P},
P;). We also calculate the distance between the point P; and
the plane (Section 2 of appendix), which is defined as d.
We then find the nearest distance (d;) between the two line
segments (P, P;) and (P, Py) that are in the same plane.
Then, the nearest distance between the two line segments will
be the square root of (d| x dy + dy x da).

7. Movement of a Point Penetrates a Triangular Polygon

A pointis at point P; in time #; and at point P; in time £5. A
triangular polygon has vertices F,, Py, and F.. We want to
check if the movement of the point penetrates the triangular
polygon. First of ali, we find the normal N of the triangle,
which is equal to the cross product of the two vectors (Py — Pr)
and { P, — P.) and normalize it. We then check if there is an
intersection between the line segment (P, P3) and the plane
containing the triangle (Section 5 of appendix). If there is
an intersection, we check whether the intersection peint is
inside the triangle or not. If the intersection point is inside the
triangle, the movement of the point penetrates the triangle.

8. Collision between a Moving Line Segment and a Static
Line Segment in 3D Space

At time ty, the line segment Iy, is at I (fg), and at time
it moves to I (1), We want to know if the movement of
p from #y to t; passes the line segment [y. The analytical
sotution could be found in Schomer and Thiel (1995). Their
method gives the exact solution for the collision time and the
collision point. However, this solution is computationally too
expensive to be used in haptic rendering since the haptic loop
needs to be updated at about 1 kHz. Instead, we present a
simplified method in here. Although this method does not

calculate the exact collision time and the collision point, it
reporis whether the movement of cone line crosses the other.
For this method to be valid, the translation and rotation of the
line segment should be very small. (This is absolutely the
case in haptic rendering since the haptic loop is updated at
about 1 kHz and the movements of our hand are quite slow.)
To detect the collision, we first calculate the vector 50, which
represents the nearest distance from .4 to 14 (fy) (see Section
6 of appendix). Let us call the nearest points on the two lines
Pedo and Pgq. We also calculate the nearest distance vector
Dy from [y to 1 (f1). Let’s call the nearest points on the two
lines Pegy and Pppy. If (1) the dot product of Dy and Dy is
negative, (2) neither Poy0 nor Prq1 are the end points of [y,
(3) Papp is not the end point of I (2y), and (4) Py, is not the
end point of Ly, (#1), we say the movement of I3 from 1y to 4
crosses the line segment [4.
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