[EEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vVOL. 49, No. 7, JuLy 2002 A71

Statistics of Envelope of High-Frequency
Ultrasonic Backscatter from Human Skin
In Vivo

Balasundar I. Raju and Mandayam A. Srinivasan

Abstract—The statistics of envelope of high-frequency
ultrasonic backszcatter signals from in vivo normal human
dermis and subcutaneous fat were studied. The capability
of six probability distributions (Rayleigh, Rician, K, Nak-
agami, Weibull, and Generalized Gamma) to model em-
pirical envelope data was studied using the Kolmogorowv-
Smirnov (KS) goodness of fit statistic. The parameters of
all the distributions were obtained using the maximum like-
lihood method. It was found that the Generalized Gamma
distribution with two shape parameters provided the best
fit among all the distributions in terms of the K8 goodness
of fit. The K and Weibull distributions also modeled the
envelope statistics well, The Rayleigh and Rician distribu-
tions provided poorer fits. The parameters of the Gener-
alized Gamma distribution, however, showed a larger vari-
ability than those of the other distributions. The intersub-
Jject variability in the estimated parameters of all the dis-
tributions was found to be comparable to the intrasubject
variability., Fat was seen to exhibit significantly more pre-
Rayleigh behavior compared to the dermis. The parameters
of the Generalized Gamma distribution also showed signif-
icant differences between the dermis at the forearm and
fingertip regions.

I. INTRODUCTION

IGH frequency (= 20 MHz) ultrasound has several ap-

plications in dermatology, such as the evaluation of
tumors, scleroderma, psoriasis, contact dermatitis, burn
injuries, and sun damage. However, conventional B-scan
images of the skin do not fully exploit the information con-
tained in the backscattered echoes, and gquantitative tissue
characterization studies might provide additional informa-
tion about these tissues, The need for such studies is evi-
dent from earlier works which have shown that, when using
B-scan images of the skin, it is often difficult to distinguish
between benign and malignant lesions [1], between differ-
ent types of skin tumors [1], [2], between melanoma and
a sear tissue [3], or between tumors and subtumoral in-
flammatory infiltrate [4]. It is conceivable that, given the
vast variety of skin ailments, quantitative methods might
provide additional information for classifying various skin
tissues.
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One approach for obtaining additional information for
characterizing tissues using ultrasound is analyzing the
statistical fluctuations of the backscattered signals, Ul-
trasonic signals can be modeled as stochastic signals, be-
cause the precise details of the scattering structures in
tissues, and consequently the details of the backscattered
signals, are not known a priori. In prior studies, the first
order statistics of the amplitude of backscattered signals
from several tissues—such as the liver [5], [6], heart [7]-[9],
breast [10], eye [11], and kidney [12]—have been studied.
Parameters related to amplitude statistics—such as the
scatterer number density [12], [13] and its frequency depen-
dence [14]—also have been studied for their potential for
tissue characterization. Moreover, second order statistics
also have been studied [15]. Much of the theoretical back-
ground for such studies was obtained from earlier works in
other fields, such as optics, radar, and communications.

To realize the goal of better discrimination of skin tis-
sues with ultrasound, in this paper we study the first order
statistics of envelope of backscattered signals from nor-
mal human dermis and subeutaneous fat. The reasons for
the present study and its contributions are as follows. Un-
til now, tissue characterization studies of skin have heen
sparse, and very little information on ultrasound-skin in-
teraction is available. Previous studies in this regard have
involved only attenuation [16]-[20] and backscatter [16],
[20] coefficients of skin tissues. Until now, the statistical
distributions of the envelope of backscattered signals from
skin tissues have not been studied. The type of probability
distribution of the envelope signals, and their parameters,
could contain potential information regarding tissue mi-
crostructure that could be exploited for tissue characteri-
zation. In this work, we study the capability of six different
probability distributions (Rayleigh, Rician, K, Nakagami,
Weibull, and Generalized Gamma) to model the statistics
of envelope of backscattered data collected from the skin
of several human volunteers in vivo using the Kolmogorov-
Smirnov (K5) statistic as a goodness of fit measure. We
also study the variability in parameter estimates and com-
pare inter- and intrasubject variability, This is important
as a large variability in the estimates might limit the ca-
pability of the parameters for tissue characterization and
methods to reduce such variability should be pursued. The
capability of the parameters to differentiate different skin
tissues (dermis vs. fat, forearm dermis vs. fingertip dermis)
is also studied.

OBRE-3010,/$10.00 © 2002 IEEE



872
II. PROBAERILITY DENSITY FUNCTIONS

The signal received by an ultrasound transducer can
be modeled as a phasor sum of the returns from several
seatterers within the resolution cell of the system:

re¥ = Za;efei, (1)
i=1

where a;'s are the amplitudes of signals scattered from the
individual scatterers, which in turn depend on the shape,
size, and acoustical properties of the scatterers and the
surrounding medium, and the #;'s depend on the position
of the scatterers. Because the precise details regarding the
scattering cross sections of the individual scatterers are
unknown, the a;'s are modeled as random variables. Also,
becanse the locations of the scatterers are unknown, the
;s are also modeled as random variables. Moreover, n, the
number of scatterers contributing to the resultant, also can
be a random quantity in general. Hence, the resultant am-
plitude 7 is also a random guantity that can be described
using probability density functions (pdfs). It should be
pointed out that the model presented in (1) iz an ideal-
ized ome because realistic scattering ocours continnously
throughout the tissue and not at discrete points. Never-
theless, it provides a convenient starting point for analysis.
Even with this simplified model, it generally is difficult to
obtain the exact pdf of the amplitude r, except when n iz
amall and the #;'s are assumed to be uniformly distributed
between 0 and 27 [21]. In practice, several well-known dis-
tributions are used to describe the pdf of v, and their ap-
propriateness is evaluated using goodness of fit measures,
In making such a description, one desires that the distribu-
tion fits empirical data well and is sufficiently rich enough
to model a variety of scattering conditions. With the aim
of determining the pdf that best models backscatter data
from skin tissues, six probability distributions summarized
below were studied in this work, Expressions for their pdfs,
denoted as p(r), and their cumulative distribution func-
tions (edfs), denoted as F(r), also are given. The expres-
sions for the cdfs were used in computing the KS poodness
of fit measures. Also mentioned are the bounds on the ratio
of the mean to standard deviation, denoted as SNR.

A. Rayleigh Distribution

The Rayleigh distribution [22] results as a consequence
of the central limit theorem, when the scattering medium
contains a large number of randomly distributed scatterers
(f;'s uniformly distributed between 0 and 2). It also can
result if the individual scattering amplitudes a; in (1) are
themselves Rayleigh distributed, even for finite n. Tts pdf
and edf are given hy:

pir) = ‘:—ze_{ﬁ%j r=lo=0 (2)
Fir)=1- o) (3)

For this distribution, the SNR is equal to 1.91.
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B. Rician Distribution

The Rician distribution [23] results if, in addition to
conditions leading to the Rayleigh distribution, a specu-
lar or unresolved coherent component exists vielding the
following pdf and cdf for the amplitude of the resultant
phasor:

pl:‘I'::l=i.ﬁ (T'ETHE)ID (ﬂ) r>lsz0o>0
a? o ) (4)
Pr)=1-Q1(. 7). (5)

where Iy x) is the modified Bessel function of the first kind
of order 0, @, is the Marcum ( function [24], and & is the
amplitude of the coherent term. The Rician distribution
includes the Havleigh distribution as a special case for s =
(1. The SNR for this distribution is >1.91.

O K Distribution

The K distribution [25] results when the #;'s are dis-
tributed uniformly between 0 and 27, and the number of
scatterers is random and follows negative binomial statis-
tics, provided the mean number of scatterers is large, This
distribution also arises if the individual scattering ampli-
tudes a;'s are themselves K distributed, even for finite n.

The pdf and cdf are given by:

pir) =2 (%)"‘ % Koilbr) r20;ab }.g %
2 by

where o and b are the shape and scale parameters, re-
spectively, and K,(zx) is the modified Bessel function of
the second kind of order a. The relationship between the
Rayleigh and K distributions was given by Jakeman and
Tough [26], who showed that a Rayleigh process with non-
constant second-moments is K distributed. Thus, varia-
tions in scattering cross sections of the individual seatier-
ers tend to lead to deviations from the Rayleigh distribu-
tion to the K distribution. The K distribution includes the
Rayleigh distribution as a special case for a = oo, and has
an SNR < 1.91.

1. Nakagami Dhstribution

The Nakagami distribution, first derived by Nakagami
[27] based on his large-scale observations in high-frequency,
long-distance radio propagation, has the following expros-
sions for the pdf and edf:

p{-r} = —T[gm_”ﬁ'_{ﬂﬁz} T2 G, m, Q=0
T{m)frm (8)

F(r) = Tine (m. ,%,,z) , (9)
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where m and £} are the shape and scale parameters, respec-
tively, and Tipc(m, z) is the incomplete gamma funetion,
Although derived empirically, theoretical justifications for
encountering this type of distribution were provided by
Yacoub [28] based on the observation that the power of a
Nakagami distributed signal is the same as that of another
signal composed of the incoherent sum of several Rayleigh
signals. For example, if signals from two Rayleizh regions
are added coherently, the sum has a Rayleigh envelope.
However, if these signals are added incoherently (powers
added rather than instantaneous amplitudes), the resul-
tant power is the sum of two exponential random variables,
which iz gamma distributed, in which case the amplitude
is Nakagami distributed. Thus, the Nakagami signal can
be understood to be composed of clusters of waves added
incoherently, for which within any one cluster the resul-
tant obeys Rayleigh statistics, and the clusters are ran-
domly distributed and result in the incoherent addition
of the resultants. In an ultrasound context, Shankar [29]
showed that the Nakapami distribution could model a va-
riety of conditions, including pre-Rayleigh, Rayleigh, and
post-Rayleigh conditions and can be useful in modeling
backscatter signals from the human breast [10]. The Nak-
agami distribution includes the Rayleigh distribution as a
special case (m = 1) and approximates the Rician distri-
bution for m > 1. Its SNR can take any positive value.

E. Weihull Distribution

The Weibull distribution was first proposed in the con-
text of reliability engineering [30] and is described by the
following pdf and cdf:

: r=0ab=0
“ (10)
Flr)=1-¢{5), (11)

Tn (10} and {11), b and a are the shape and scale param-
eters, respectively. Good evidence for this distribution has
been observed in modeling radar clutter signals [31]. No
theoretical explanation seems to be available for encoun-
tering this type of distribution. However, the fact that this
distribution can maodel pre-Rayleigh, Rayleigh, and post-
Raleigh conditions can be seen from the relationship be-
tween the SNR and the shape parameter b

r(1+3)
. ()
2 1

{1+ -T? (14~
Rl iees)

The SNR monotonically increases with b, with 0 < & < 2
corresponding to pre-Rayleigh (SNR < 1.91), b = 2 corre-
sponding to Rayleigh (SNR = 191}, and b > 2 correspond-
ing to post-Rayleigh or Rician (SNR > 1.91) conditions.

The primary reason for ineluding this distribution in this
study is that the functional form of its pdf is different from

SNR =

BT3

that of the other distributions—such as the K and the Nak-
agami distributions—thereby increasing the search space
of appropriate distributions for skin tissues. The SNR of
the Weibull distribution can take any positive value.

F. Generalized Gamma Distribution

The generalized gamma distribution, hereafter referred
to as the GG distribution, was introduced by Stacy [32]
and is a three-parameter distribution whose pdf and cdf
are given by:

[cr—1} .
cr—1€_|:ﬂ =0 a,v,c=10
I,".I."'ml ['!.l;l

P =1 (0 (2))

In (13) and (14), ¢ and v are two-shape parameters that
provide exibility in adjusting the shape of the pdf, a is the
scale parameter, and Uy (m, o) is the incomplete gamma
function. This distribution previously was found to be use-
ful in modeling the fading of signals in a mobile radio en-
vironment [33]. Recently, while the present work was un-
der review, Shankar [34] independently proposed the use of
this distribution to model ultrasound envelope signals. The
GG distribution is especially attractive because it contains
several distributions as special cases: Rayleigh (¢ = 2 and
v = 1), exponential (c = 1 and » = 1), Nakagami (¢ = 2),
Weibull {v = 1), and the usual gamma (e = 1) distribu-
tion. The lognormal distribution also arises as a lmiting
case when v approaches oo, Moreover, the GG distribution
provides two parameters for tissue characterization instead
of, at most, one for all the other distributions. It also is
interesting to note that, if v is GG distributed, so is v,
and hence, the GG distribution can be used for modeling
both the amplitude and intensity Auctuations.

For the sake of completeness, we also mention
some other distributions that have been studied: the
Generalized-Rician [35], [36], the Homodyned-K [37], and
the Generalized-K distributions [26]. They were not used
in this study because the simpler Nakagami distribution
can model conditions leading to these distributions [29].

p(r) =
(13)

(14)

I1I. METHODS
A. Erperimental Sysfem

The experimental system and data acquisition proce-
dure are described in detail elsewhere [20], and only brief
details will be given here. The system consisted of a PVDF
transducer (Panametrics, Waltham, MA, Model P150), a
pulser/receiver {Panametrics; Model PR5900), a digitiz-
ing oscilloscope sampling at 500 MHz (Tektronix, Beaver-
ton, OR, Model TDS 520C), and a 3-axis scanning sys-
tem (Parker Hannifin/Compumotor, Cleveland, OH). The
characteristics of the transducer used in this study are
shown in Table I. A computer was used to control both
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TABLE I
CHARACTERISTICS OF THE TRANSDUCER UseD v THIS STUDY.*

Transducer PI50 (Panametrics Inc.)
Center frequency 25 MH=
—6G 4B bandwidth 30 MHz

F-number 2

Diameter .35 mm
Focal length 12.7 i
—& dB depth-of-focns 1.3 mim
Axial resolution (L.025 mm
Lateral resolution (1.1 mm

*The center frecquency and —& dB bandwidths were experimentally
determined based on the spectrum of signal reflected from a per-
fect reflector at the transducer's focus. The F-number, diameter,
and focal lengths are [rom the manufacturer’s specifications, The
depth-of-focus was experimentally determined. The axial and lateral
resclutions were computed according to expressions for the —6 dB
full widths.

mechanical scanning and GPIB-based data acquisition. By
averaging 100 repeated acquisitions, the signal-to-noise ra-
tio of each echo sequence was vastly improved. This ap-
proach was especially useful to record signals from sub-
cutaneous fat, which were considerably weaker than those
from the dermis. The secanning system had encoders on
the x and y-axes that enabled the transducers to be posi-
tioned with an accuracy of 1 pm. Fcho sequences were col-
lected from 25 independent lateral locations of the trans-
ducers by scanning along the x and yv-axes over an area of
L5 mm ® 1.5 mm in a 5 by 5 raster format. The stepping
distance of 0.3 mm was larger than the lateral resolution
of the system (0.1 mm). Because the transducer was well
focnsed, diffraction effects could lead to signal variations
with depth. Therefore, the transducer was axially trans-
lated to focus at a desired depth, and data were recorded
from the location of the focal zone, Once the raw data were
collected, further analyses were done off-line on a com-
puter.

B. Human Subjects and Tissues

In most parts of the body, the skin consists of a thin
layer of epidermis (0.15 mm thick) and a thicker underly-
ing layer of dermis (1.2-1.8 mm thick). The region beneath
the dermis consists of subcutanecus fat, which is some-
times considered as a third laver of the skin and referred
to as the hypodermis. In the palms and soles, the skin
is vastly different from that at other locations. Notably,
the epidermal thickness is much larger (about 0.6 mm) in
these regions due to the increased thickness of the stra-
tum corneum, the dead layer of cells. In this work, data
were collected from the dorsal side of forearm skin (close
to the wrist) as well as the tip of the left index finger on
the palmar side. Because skin conditions could depend on
age, the study was restricted to only young adults. Eigh-
teen subjects aged hetween 20 and 36 (median = 26) were
used. In the case of the forearm region, both the dermis
and subeutaneonus fat tissues were studied; at the fingertip
only the dermis was studied as the signals from subcuta-
neous fat at this region were close to the noise level. At
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the forearm, data collected when the focal zone was at
0.6 mm below the surface were taken to correspond to the
dermis, and data collected when the focal zone was located
at 2.4 mm below the surface were considered to correspond
to fat, Oceasionally, for some subjects, when fibrous septae
were seen to be present in the fat at a depth of 2.4 mm
(identified as hyperechoic structures within a relatively hy-
poechoic fat), another depth between 1.8 and 3.0 mm was
used to extract data corresponding to fat. In the case of
the fingertip, data collected when the focal zone was at
1.05 mm below the surface were taken to correspond to the
dermis. For each aof the experiments, a second independent
repetition at a close-by region (displaced by a few millime-
ters from the original site) was done to increase the num-
ber of independent samples. In order to study intrasubject
variability and compare it with intersubject variability, 18
repetitions of the experiment were done for one subject
(male, 28 vears) at the fingertip region. Water was used as
a coupling medium between the transducer and the tissue.
During imaging, the forearm was held steady on a table
using Velero straps. The fingertip was kept steady using
custom-made finger splints.

. Determination of Empirical Probability
Density Funelions

After echo sequences were recorded, the Hilbert trans-
form approach was used to obtain envelope signals, Sixteen
independent samples of the envelope signal, all lying within
the focal zone region, were extracted from a particular echo
sequence by picking every eighteenth sample. Assuming a
speed of sound of 1.5 mm/ us in skin, the spacing between
the extracted samples was 27 pm, which was larger than
the axial resolution of the transducer (25 pm). Also, the
total length of 405 pm spanned by all the 16 axial samples
was considerably smaller than the —6 dB depth-of-focus
of the transducer {1.3 mm}. With 16 samples per echo se-
quence, 25 such echo sequences through lateral scanning
(the transducer was focused at one specific depth, eg.,
0.6 mm below the surface for the case of the dermis for all
the 25 echo sequences), and two repetitions of the exper-
iment, a total of 800 samples were available to construct
empirical histograms, Before combining the samples in the
above manner, compensation for attenuation within the
405 pm distance was done by assuming attennation co-
efficient slopes of 0.21, 0.18, and 0.33 dB/mm/MHz for
the forearm dermis, forearm fat, and fingertip dermis, re-
spectively [20]. Also, occasional specular reflectors (e.g.,
fibrous septae in subeutaneous fat) were eliminated prior
to analysis to the extent possible. Such occasional spec-
ular reflectors would make the results more pre-Rayleigh
than the ones reported in this work [36] and were removed
because they were considered extraneous to the tissue of
interest,

I Estimation of the Parameters

Estimation of the parameters of all six distributions
was done using the maximum likelihood (ML} method,
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in which the set of parameters that maximizes the likeli-
hood funetion or its logarithm is determined. In the case of
the Rayleigh distribution, the ML parameler was obtained
using a closed-form expression:

E(r)

5 (15}

5?.41, =
In this paper, E{x) represents the mean of the random
variable z, and is taken to be equal to the sample mean.
For distributions other than Rayleigh, simple closed-form
solutions for the parameters do not exist, and the ML pro-
cedure was implemented as an optimization problem that
sought to determine parameters which maximized the log-
likelihood function. The optimization procedure was im-
plemented using the Nelder-Mead Simplex method [38]
available in the Matlab optimization toolbox (The Math
Works Inc., Natick, MA). This method does not require
the computation of derivatives but requires an initial guess
of the solution. The initial guesses of the parameters {de-
noted with subscript 0 in this paper) were obtained using
the method of momentis as described below. For the Rician,
K, and Nakagami distributions, the initial guesses were ob-
tained using estimated second and fourth moments of the
data. For the Rician distribution we have:

s0= {2 [B()P - E() (16)
E 7By ; 2
Ok . a7
2
For the K distribution we have:
2 ;
= — 18
&y B {T‘i} ‘ {-. }
[E (r2)]?
davy
- : 19
E:'l:l B |:'r2::| [ l,:l

For the Nakagami distribution the initial guesses were ob-
tained as:

o B ()]’
M B — [E)
o = E (+%).

(20)
(21)

Under some conditions, (16)-(19) for the Rician and
K distributions do not yvield meaningful solutions. For
instance, if the data were truly pre-Ravleigh distributed
{e.g., K distributed), the computed value of sp would be
complex. This was indeed the case for almost all of the data
obtained (see Section IV). The ML procedure for the Ri-
cian distribution was implemented by assuming the initial
guess 5p to be a small positive quantity, equal to 0.1, How-
ever, if the data were truly Rician distributed, the com-
puted value of oy would be negative. But no such problem
was seen for all the data sets analyzed in this paper.
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Tor the Weibull distribution, an iterative procedure was
used to compute the initial guess by by solving the follow-
ing equation:

r(1+2) 5@
p0+é)‘wmﬁ

It can be shown that the LHS of (22) is a monofonic
function of by; therefore, a unigue solution exists. The so-
lution was obtained using a look-up table containing pre-
computed values of the LHS as a function of finely spaced
by (accuracy of estimate was (L0035 in the range 1 < by < 2,
where the solution was found for the data sets in this
work). Onee by was obtained, ap was obtained [rom the
following expression:

(22)

Eir)
r [1 + E]
For the GG distribution, the initial guesses for the parame-

ters were obtained using the moments of logarithm of data
as proposed by Stacy and Mihram [39]:

(23)

3
W w) E [(lla{f‘j - ]n{r}_ ] \
[ (wo)]™® {E [(lnf_r} - ln(*r})E] }m‘ (24)

P ' (vo) . (25)
E [(In[rj ~In(r)) ]
a0 = Br)— 20 (26)

+1
In (24) and (25), ¥"(v) = aﬁ;ﬁ]n[f'(u]] is the poly-
gamma function, which was evaluated using the poly-
gamma function in Matlab's Symbolic Toolbox. At first, vy
was obtained by solving (24), where the RHS of this equa-
tion is the skewness of the logarithm of the data. Fig. 1
shows a plot of the LHS of (24) as a function of vg. It can
be seen that this function is monotonic; hence, a unique
solution for tg exists as long as the RHS is between —2
and 0, which was the casze for all the data sets analyzed in
this work. A look-up table with precomputed values of the
LHS as a function of vy was used for this purpose (accu-
racy of estimate was 0.005 for the values estimated in this
work). After vy was obtained, the value of g was obtained
using (25), and subsequently the value of ag was obtained
using (26).

After the initial guesses of the parameters of the Ri-
cian, K, Nakagami, Weibull, and the Generalized Gamma
distributions were obtained as described above, the ML
estimation was implemented using the Nelder-Mead opti-
mization technigue. We note that there are other simpler
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157 10" 0 W 1

Fig. 1. Computation of the initial guess of the GG-v parameter. The
graph shows the LHS of (24) as a function of the parameter wq.

methods to compute the parameters of some of the above
distributions [40], including the use of fractional order mo-
ments [41]. However, in order to compare the capability
of various distributions to model data from tissues, it is
preferable to use the same method for estimating the pa-
rameters of all the distributions. Thus, the ML method
was used for estimating the parameters of all the distribu-
tions. Also, the Nelder-Mead technique provided a uniform
scheme to implement the ML method for the various distri-
butions, although we note that alternate implementations
of the ML method also are possible [42].

E. Numerical ITssues

One issue in implementing the ML estimation procedure
is that proper care is needed to prevent overflow problems
while computing the log-likelihood functions. For example,
the gamma function present in expressions for the pdfs of
some of the distributions could easily overflow the maxi-
mum limit of most computers when its argument is large.
However, its logarithm has a much smaller value; therefore,
while computing the log-likelihood functions, a direct eval-
vation of the logarithm of the gamma function was used.
Also, while computing the log-likelihood funetions for the
K distribution, the Bessel function K._;(x) could over-
flow the maximum limit of computers for small values of
z. Hence, an exponential approximation was used in such
cases [43];

ax—1
Kﬂ,_,[z}zy(g) forz€a—-1.

3 (27)
The logarithm of the above function was evaluated directly
without first computing the exponential, thereby avoiding

numerical overflows.
F. Goodness of Fit Testing

The goodness of fit of each of the candidate distribu-
tions to the empirical distribution was evaluated using the
KS goodness of fit measure, which is the maximoum abso-
lute difference between the fitted edf and the empirical edf
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[44]. A smaller value of the KS statistic indicates a bet-
ter fit of the particular distribution to empirical data. For
computing the fitted edfs, the expressions given in Sec-
tion II were used. The KS test also enables us to accept or
reject the hypothesis that a particular distribution could
model the empirical data for a chosen level of significance,
For example, for a significance level of 0.01, in order to
accept the model, the KS value should be less than (see
Table A14 in [44]):

_ 163
VN’

which for a sample size of N = 800 is 0.0576.

D (28)

(7. Statistical Tests

To study the capability of the parameters of the various
distributions to differentiate different tizsue types (dermis
va. fat; forearm dermis vs. fingertip dermis), the Wileoxon
sign rank test (without the normal approximation for the
test statistic) was used. In this test, the two values being
compared are taken as paired samples.

I'V. RESULTS

A. Probability Density Function of Amplitude
of Backscatfered Signals from Skin Tissues

Fig. 2 shows typical pdf fits to empirical envelope data
obtained at the forearm of a human subject in vivo for all
the six distributions. The fits were obtained using the ML
method for estimating the parameters with a sample size
of 800. It can be seen that the GG pdf fitted the empirical
histograms very well and had the smallest KS value com-
pared to the other distributions. The empirical histograms
were pre-Rayleigh, and the Rayleigh and Rician distribu-
tions modeled the empirical histograms poorly compared
to the other distributions. Also, the best Rayleigh and Ri-
cian fits were almost the same, which is consistent with the
fact that the best Rician fit to data that are pre-Rayleigh
distributed is the Rayleigh fit. Other distributions, espe-
cially the K and Weibull distributions, also show good fits
to the data. The empirical histogram for the case of fat
was more pre-Rayleigh than that of the dermis.

Fig. 3 shows the KS goodness of fit measures between
each one of the six distributions and the empirical distri-
bution for the forearm dermis, forearm fat, and fingertip
dermis. The GG distribution provided the best fit in a
majority of cases, and on the average had the smallest KS
statistic values. Next to the GG distribution, the K and
Weibull distributions also provided good fits to the data as
seen by the closeness of their KS values to that of the GG
distribution. If a hypothesis test was undertaken at a sig-
nificance level of (.01 to accept or reject each of the mod-
els, the KS values should be less than 1.63/+/N, which for
N = B0 is 0.0576. It can be zeen from Fig. 3 that, on the
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Fig. 2. Fitting probability density functions to empirical data.
(a) Corresponds to data from the forearm dermis; (b) corresponds to
data from the forearm fat. The pdf fits were scaled so that the ares
under the curves matched the total area under the histograms. The
samples were normalized so that the maximum value was unity. The
Rayleigh and Rician fits are colinear. The values in the inset are the
K5 goodness of fit values.

average, the GG, K, and Weibull distributions would sat-
isfy this criterion for all three tissues. The Nakagami distri-
bution, although better than the Rayleigh/Rician maodels,
did not fit the data as well as the GG, K, and Weibull dis-
tributions. For all the data sets, the Rayleigh and Rician
distributions gave poor fits to the data, and hence their
parameters were not studied further,

B. Intersubject Variability vs. Introsubject Variability

Fig. 4 shows a plot of the estimates of the SNR pa-
rameter and of the shape parameters of the K, Nakagami,
Weibull, and GG distributions for all the subjects, and for
1B repetitions on the same subject. All the data were ob-
tained at the fingertip. For both the inter- and intrasubject
cases, the SNR and Weibull-b parameters showed smaller
variability (5-7% of the mean) than the other parameters.
The K and GG distribution parameters showed larger vari-
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Fig, 3. The K5 goodness of it measure between the empirical dis-
tribution and each of the six fitted distributions (HA-Rayleigh, RI-
Rician, K-K, NA-Nakagami, WE-Weibull, GG-Generalized Gamma)
for the (a) dermis and (b) fat at the forearm wrist and the (¢) dermis
at the fingertip. Each dot corresponds to data from one particular
subject. The mean, standard deviation (S}, and the number of sub-
jects for which the KS value of that particular distribution was the
best (smallest), are indicated.

ability (17-43% of the mean). The Nakagami-m parame-
ter showed about 9% variability with respect to the mean.
For the SNIt, Nakagami-m, and Weibull-b parameters, the
percent variability was only marginally smaller for the in-
tersubject case than for the intrasubject case. Given that
these parameters are positively biased, the smaller vari-
ability in the intrasubject case could be accounted for by
the smaller mean values. In the case of the K-o and GG-c
parameters, the percent variability was smaller for the in-
trasubject case, but once again these could be explained
by the differences in mean values. For the GG-v parame-
ter, the intersubject variability was larger even though the
means were comparable, but it is conceivable that the vari-
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ahility could have been lower than the intrasubject case if
a couple of extreme values had been excluded [Fig. 4(e)].
These results suggest that the inter- and intrasubject vari-
ability in the parameter estimates are similar. Although
the particular subject chosen for the intrasubject may not
be characteristic of all subjects, the similarity in intra- and
intersubject variability indicates that reasons other than
genuine intersubject differences might be important and
suggests further work for identifying and reducing vari-
ability.

. Characterization of Differences in Tissues

The SNR parameter and the shape parameters of the K|
Nakagami, Weibull, and GG distributions were evaluated
for their capability to differentiate between the dermis and
fat at the forearm, and between the dermis at the forearm
and fingertip regions. For this purpose, the difference in
the estimated parameters between the two tissues taken
subjectwise were computed. The data to compare forearm
dermis and fat were obtained from the same experiment in
which the location of the transducer focal zone was axially
shifted to focus first on the dermis and subsequently on
fat. The data to compare the forearm and fingertip dermis
were obtained from two separate experiments done one af-
ter the other at the two body sites. From Fig, 5 it can be
seen that the differences in parameter estimates between
the dermis and fat was positive in a majority of the cases
for SNR, K-a, Nakagami-m, Weibull-b, and GG-¢ param-
eters, and negative in a majority of cases for the GG-v
parameter, For all parameters, significant differences be-
tween the dermis and fat could be seen as indicated by
low p-values. Between forearm dermis and fingertip der-
mis, a similar trend is seen, but only the GG parameters
showed significant differences at a (0L.01 significance level.
These results indicate that the GG-v and GG-c parame-
ters might be more capable of differentiating tissues than
the other parameters.

V. IMECUSSION

Skin is an easily accessible organ in the human body and
is affected by a large number of lesions. With conventional
ultrasound, it is often difficult to distinguish between var-
ious lesions and, hence, additional quantitative studies
might be useful, One such method is the use of envelope
statistics. This study seems to be the first one on modeling
the pdf of envelope signals from skin tissues. The statistics
of envelope signals can provide additional information only
if the statistics deviate from the Rayleigh behavior. If only
Rayleigh statistics were present, no additional information
other than the mean backscatter level can be used for tis-
sue characterization. This study supports the hypothesis
that non-Rayleigh, specifically pre-Rayleigh statistics, are
present in the case of skin tissues (at least for the specific
transducer used), which, therefore, can provide additional
information for tissue characterization. However, the non-

Rayleigh behavior cannot automatically be ascribed to the
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small resolution cell sizes present in high-frequency imag-
ing systems. This is because tissues contain scatterers even
at gmall length scales, and the number of scatterers iz not
necessarily small for small resolution cell sizes. For exam-
ple, collagen fibers, the dominant scatterers in the dermis,
are themselves composed of smaller fibrils and microfibrils,
all of which constitute scatterers ranging in size from tens
of microns to tens of Angstroms [45], [46]. It is likely that
the variation in scatterer cross sections is large enough to
canse the effective number of scatterers within the resolu-
tion cell to be small, leading to pre-Rayleigh statistics, It
alzo should be pointed out that the envelope statistics are
not only dependent on the tissue being studied, but also
are dependent on the imaging system used. When a less
focused tramsducer (f/#=4, but similar frequency charac-
teristics to the one reported in this work) was used, the
mean estimated SNR values were about 9% larger for both
the dermis and fat tissues {results based on this transducer
are not reported in this work). This is consistent with the
fact that the resolution cell size is larger for a less focused
transducer than a more focused transducer, leading to less
pre-Rayleigh deviations.

Frevious studies (involving other tissues) have rarely
compared the performance of several distributions for
modeling empirical data. Also, except for the recently pub-
lished independent work by Shankar [34], the applicability
of the GG distribution has not been studied in an ultra-
sound context, Our study shows that the GG distribution
was able to fit the empirical envelope data from skin tissues
better than all the other distributions. This is not surpris-
ing as the GG distribution has one additional parameter
that makes it more flexible to tailor itself to empirical data
as long as a sufficient sample size is available. However, it
should be noted that, even among distributions with the
same number of parameters, some of them fit better than
the others. For example, the K and Weibull distributions
fit better than the Rician and Nakagami distributions even
though all of them have two parameters, implying that the
number of parameters does not solely determine the good-
ness of fit. Thus, the better fit of the GG distribution is
not merely because of having an additional parameter, but
rather because of its ability to adjust its upper and lower
tails independently with two-shape parameters [33], [34].
Other distributions, especially the K and Weibull distri-
butions, also were able to model the envelope data well.
In practice, the choice of an appropriate distribution will
depend not only on the poodness of fit, but also on other
factors, including the variability in the estimated parame-
ters, the sample size available (which is related to the vari-
ability), and the capability of the estimated parameters to
classify different tissues. Even though all the parameters
were estimated using the same sample size, the GG-v pa-
rameter showed larger percent variations than the other
parameters. This would imply that, in general, a larger
sample size would be necessary to estimate the GG pa-
rameters to a desired level of accuracy. Such variability
issues regarding the GG distribution have been studied
before, because of which the Weibull distribution has of



RAJU AND SRINIVASAN: HIGH-FREQUENCY ULTRASONIC BACKSCATTER FROM HUMAN SKIN

ten been considered appropriate when the sample size is
small [47]. The K distribution yielded very good goodness
of fit measures, but it showed more variability than the
Weibull parameters. It is known that the K distribution
becomes less useful when the true value of o is large, be-
cause the variance in the estimate becomes large [12]. The
Weibull and Nakagami distributions do not have this dif-
ficulty. Between the Weibull and Nakagami distributions,
the Weibull distribution outperformed the Nakagami dis-
tribution with better goodness of fits as well as a smaller
pereent variability, It is likely that the Weibull and GG
distributions might prove useful in modeling ultrasound
echo signals when small and large sample sizes are avail-
able, respectively.

One would expect the intrasubject variability in the pa-
rameters to be smaller than the intersubject variability as
additional differences from one subject to another could
arise due to different skin conditioning, aging, or sun ex-
posure, However, the intrasubject variability was found to
he similar to intersubject variability for data collected at
the fingertip. This indicates that any genuine variability
hetween subjects is overshadowed by other factors. One
possible reason is the finite sample size used to estimate
the parameters. Inereasing the sample size could reduce
variability but only at the loss of stationarity in tissue
properties, Other possible factors include variations in am-
bient humidity, time to acclimatize to the ambient condi-
tions, and diurnal changes associated with skin [48]. The
fact that intrasubject variability is large indicates that, for
tissue characterization, data should preferably be acquired
from both the suspected lesion and the adjoining normal
skin tissue during the same experiment itself.

Dermis and fat are vastly different tissues. They easily
can be differentiated using the absolute backscatter levels
in the frequency range 20-50 MHz [20]. The present work
supports the hypothesis that they can be differentiated
using envelope statistics as well. This was despite the vari-
ability in the estimated parameters. Fat was seen to show
more pre-Rayleigh behavior as shown by smaller SNR val-
ues. More deviation from Rayleigh to pre-Rayleigh is the
result of more variations in the scattering cross sections, or
equivalently, smaller effective number of scatterers in fat.
Such variations in fat tissue could be due to the presence
of septa/fascia, adding to the inhomogeneity of the tissue.
Between the dermis at the fingertip and forearm regions,
only the GG parameters showed differences at a 0.01 sig-
nificance level, indicating that the GG distribution might
be better snited in classifying skin tissues than other dis-
tributions (if a sufficient sample size is available). While
computing the parameter estimates for the case of forearm
fat, the effect of intervening attenuation (not the same as
attenuation within the region of interest) by the dermis,
and to a lesser extent the much thinner epidermis, was not
considered. The presence of intervening attenuation would
tend to increase the size of the resolution cell, thereby
pushing the distributions closer to the Rayleigh distribu-
tion [49]. This would lead to larger estimates for param-
eters such as K-, Nakagami-m, and Weibull-b. However,
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gven in the presence of intervening attenuation, the above
parameters were found to be smaller for fat than for the
dermis. Intervening attenuation also will affect the param-
eters estimated at the fingertip dermis due to the thicker
epidermis. Hence, it is conceivable that the true estimates
of the above parameters for the forearm fat and fingertip
dermis are smaller than what was estimated. Such effects
can be minimized using narrow-band filtering prior to es-
timation. In future work we plan to study the capability
of the parameters of non-Rayleigh distributions to differ-
entiate specific skin lesions from normal skin tissues.
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