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Abstract

Novel modeling paradigms are necessary fo cope with
the requirement of physically based real time simulation
of laparoscopic surgical procedures using force feedback.

The regquirement af real time force feedback precludes
the use of a very high high-resolution model over the
entire domain. In this paper we propose a method 1o
address this issue by introducing a multivesolution
modeling technique, where a reasonably coarse global
model is focally enhanced wsing mesh subdivision and
smoothening. The global model is based on a
discretization of the boundary integral representation of
the problem. The use of precomputation and structural
reanalysis technigues result in a very rapid computation
procedure. The local refinements are provided in the
vicinity of the tool-tissue interaction area by adaptive
subdivision of the boundary element mesh. This technigue
results in interactive graphical as well as hapric
rendering rates for reasonably complex models.

1. Introduction

The simulation of deformable objects has been widely
studied in various fields including computer animation,
computer aided design (CAD) and medical wvirtual
reality[1]. The simulation of deformations s
computationally expensive because the computation
involves discretizing complex three-dimensional domains
and solving large systems of differential equations. In
computer animation of deformable objects, for example,
detailed computations are carried out off line and each
scene is constructed frame-by-frame from these
simulations thus producing the breathtaking special effects
seen in movies. However, such an endeavor requires large
computational times and storage.
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In contrast, simulation of deformations in interactive
applications like VR-based medical simulators requires
real time performance. In surgical simulation with force
feedback, a much higher update rate of about 1 kHz is
required as well as a 30 Hz visual update rate. The need
for imteractive performance severely delimits  the
complexity of the models that can be used to perform the
computations.

Various techniques have been proposed to model the
behavior of deformable anatomical objects in real time
[2]. Cover et al. presented a methodology for interactive
deformation of surfaces for surgical simulation by using
energy-minimizing splines [3]. Delp ef al. developed a 3D
model of the human lower body to simulate punshot
injuries to the thigh [4]. They used computational
geometry techniques to develop interactive deformable
tissu¢ models.  Basdogan et al [5] developed a
deformable organ model for a laparoscopic simulator,
which computes reaction forces proportional to the
penetration depth of surgical tools and displays wvisual
deformations locally by using spline functions.

“Physically based models” such as mass—spring models
or finite element models are more desirable since they are
based on the underlying mechanics of biological tissues.
Although mass-spring models are computationally
inexpensive and easy to implement, it is difficult to extract
parameters for the individual springs, masses or dampers
from experiments. Additionally, the construction of an
optimum 3D network of springs, masses and dampers is a
complicated process and the change of resolution is not a
computationally casy task.

Techniques based on partial differential equations
governing the deformation of continua, like the finite
element method, are more appealing since only a few
material parameters need to be extracted from
experimental data to develop a consistent model.
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Figure 1. The conceptual diagram of the

multiresolution approach

Bro-Nielson and Cotin developed a simulation system
based on three dimensional linear elastic finite element
models [6-8]. Real time performance was achieved by the
use of condensation, and precomputation of the stiffness
matrix governing tissue behaviors. Wu and Tendick [9]
modeled material nonlinearities in FEM to handle large
deformation for 3D deformable bodies. However, these
finite element technigues are computationally quite
" inefficient in real time applications and the graphics
hardware currently available is not very efficient for real
time volumetric rendering.

An  alternative technique for solving differential
equations on geometrically complex domains is the point
collocation-based method of finite spheres scheme
introduced by De and Bathe [10]. This is a truly meshfree
scheme and the laborious numerical integration in the
finite element method is circumvented by satisfying the
governing partial differential equations only at a discrete
set of nodal points. De, Kim and Srinivasan applied a
localized version of this technique to compule the
deformation fields and reaction forces in the vicinity of
the tool tip in laparoscopic surgical procedures [11, 12].
While this technigue does not provide global deformation
fields, it can handle nonlinear behavior of soft tissues and
does not require any precomputations,

Another well known technigue of numerically solving
boundary value problems is the boundary element scheme
in which imtegral equations are discretized on the
boundary of the domain using piece-wise polynomial
approximations [13]. One of the earliest applications of
the boundary element technigue to the field of real time
simulation of deformable objects is the work of James and
Pai [14]. They modeled real-time quasi-static
deformations using the boundary element method and
achieved real time performance using a simple structural
reanalysis technique employing the Sherman-Morrison-
Woodbury formula for inversion of low-rank updates of
the stiffness matrix. However, the approach is limited to
linear models which are homogeneous and isotropic.

It is therefore evident that a single high-resolution
model is insufficient to perform in real time. This
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necessitates the use of multiresolution models to reduce
the burden of computation. Astley and Hayward proposed
a primitive multirate simulation technique for haptic
interactions [15] using Norton equivalents. Cavusoglu and
Tendick developed a multirate simulation technique in the
context of the finite element technigque [16]. Zhang at el.
proposed a level of detail modeling technique with haptic
subdivision [17]. Several researchers have implemented
wavelet transform techniques for multiresolution modeling
[18, 19]. Wavelets offer a natural multiresolution
modeling approach, but are not computationally efficient
for application to deformation modeling.

In this paper, we present a novel multiresolution
approach to balance computational speed and accuracy of
computations as shown in Figure 1. The justification of
using such a multiresolution approach is the following.
When a tool -tissue interaction occurs, the “scene of
action™ is restricted to only a zone in the vicinity of the
tool tip. Therefore, a high-resolution model is required for
this region and this high-resolution model is govemed by
user’s choice of tool-tissue contact location. The rest of
the domain can be modeled using a relatively coarse
maodel.

In section 2 we explain our approach of using the
boundary element method for the global model. In section
3 we describe the local enhancement techniques providing
a better quality of local deformations. In section 4 we
show some examples of the application of our technique.

2. The bhoundary integral equation based
global modeling scheme

We use the boundary element method [13] for our
global model. The boundary element technique is based
on the discretization of the integral equations of motion
posed on the surface of the model and has significant
advantages over volumetric techniques such as the finite
element method for the modeling and analysis of linear
problems.  Anatomical organs are usually available as
surface models on which texture mapping is used to
render realistic graphics. Voxel-models are also available,
but they require much higher computational efforts and
special graphics hardware. Moreover, the boundary
element technique reduces the dimensionality of the
problem by one and generates a dense, but smaller set of
equations compared to the finite element technigue. Using
accelerated iterative solvers like the GMRES [20], the
boundary element equations may be solved quite
efficiently. However, we use a technique similar to the
technique in [14] and precompute the inverse of the
stiffness matrix for a predefined set of boundary
conditions and use rapid update techniques for real time



computations. In the following paragraphs we will
discuss the details of the formulation.

The displacement (u) and traction (p) vectors at a
point x in the domain or on the boundary may be

represented by their three Cartesian components

u=u(x) = (u,,u,,u,)"

F

p=p(x)=(p,.p,.p.)"

Using piece-wise constant elements (i.e., the
displacements and tractions are assumed to be constant
over each element), the BEM equations of linear
elastostatics with ‘E’ elements is given by [13]

+§( [prdrm =i{ Ju'drp

where A; is the surface of the i element, u" and p- are

the ‘fundamental solutions’(see [13]). The coefficient ‘c’
depends on the smoothness of the boundaries and can be
found in literature (for a Lipschitz boundary, ¢ = 0.5).
Satisfying this equation at the centroids of each of the
elements and incorporating the boundary conditions, we
obtain the following system of linear algebraic equations:

AY=F

where Y is a vector of length N and contains the unknown
deformations and tractions at the centroids of the
boundary elements. A is N x N dense matrix. F is the
known right hand side wvector containing boundary
conditions and depth of tool indentation. The solution of
this system is symbolically represented as,

Y=A"F

Usually, computing the inverse of A is an OfN)
process (see table 1 for the time for building system
matnix and the time for solving system equations for three
different models). Therefore it is expedient to precompute
it.

If A, is the matrix corresponding to a set of predefined
boundary conditions, then, corresponding to a new set of
boundary conditions, the matrix A may be expressed as a
low-rank update of A,

A=A, +UVT
where U and V are matrices defined exactly as in [19].
The matrix A, and its inverse are precomputed and stored.
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The inverse of A is given by the Sherman-Morrison-
Woodbury formula [21] as follows.

A=A A DC AL

where C=1+VTA,'UeR*™%* is known as the

“capacitance matrix” and ‘s’ is number of nonzero
boundary conditions. In case of localized contact, ‘s" is
small and this ensures a computational complexity that
scales linearly with the number of unknowns in the
system. Table 1 shows the update times for three different
models and they are shorter than 1 millisecond.

When a tooltip interacts with the organ, the force of

interaction is obtained using the following formula:
F=a,p,

where a,, and p_ are the effective area of tool tip and the
traction vector at node °c’ where the interaction occurs. It
is noteworthy that p_.is an element of ¥ and can be
computed without extra computational cost.

Table 1. The computing times for various models (A
winNT workstation with dual Pentium IIl 1GHz is
used)

Points/ Modeling | Solution | Update
Moaes Triangle Time Time Time
Cube 98192 | 0.11s s il
Kidney
(Low oo 15ls | 7mz1s | 954
resolution) ks
‘EI';’I';” 1378/ 265s | 36h46m | 23
seaobution) 2752 21s msec

3. Local Enhancement of Deformation

One of the major difficulties encountered during the
display of deformation fields using a model with a single,
fixed spatial resolution is that visual artifacts like flatness
appear in the vitinity of the tool-tissue interaction point
experiencing large displacements. To enhance or refine
this, the subdivision algorithm is frequently used in many
techniques [9, 17, 22]. But these subdivision algorithms
introduce another numerical complexity. To expedite the
computation, we employ a local interpolation technique
coupled with the simplest subdivision algorithm named
“PN Triangle”. It is advantageous compared to the multi-



resolution techniques widely used in off-line graphics
applications because we can avoid heavy memory
requirements to store multi-resolution information and
complicated switching rules for display. The steps in this
procedure are summarized as follows:

1. Detect a collision  between a tool and an organ
model

2. Find neighborhood triangles around the contact
triangle that need local enhancement

3. Subdivide each coarse trangle into a finer set of
triangles

4. Read displacements of nodal points from the global
model. Usually, nodal points are vertices or centroids
of each triangle

5. Compute interpolation functions generating smooth
deformation fields

6. Compute displacements of points in refined trangles
by using the interpolation functions

7. Display the deformed entire object

In the following paragraphs we explain the subdivision
algorithm that generates a set of triangles which have a
smaller size with varying normal distribution from a larger
and flat triangle Among various subdivision algorithms in
literature {e.g., Loop [23], Catmull-Clark [24]), we choose
an algorithm called the PN algorithm developed by
Vlachos er al [25]. It divides a triangle into a set of
triangles, which have variation of normal vectors. The
geometry of a PN triangle is based on one cubic Bizier
patch. The set of subtriangles matches the position and
normal vector at the vertices of the flat tnangle. Since no
additional data other than the position and normal vector
of three vertices are necessary, it is computationally
efficient compared to the other techniques requiring the
information of neighborhood polygons. In Appendix A,
the details of the PN iriangulation algorithm are
explained.
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Figure 2. The subdivision area (a) A triangle in touch
with a tool (b) Triangles sharing edges with the
contact triangle (c)Triangles sharing vertices with the
contact triangle
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We define the “the edge neighborhood™ of triangles
around a contact triangle as those that share the same edge
with the contact triangle. “The vertex neighborhoods™ is
also defined as the group of triangles sharing a vertex with
the contact triangle. Figure 2 shows the definition of the
two groups of triangles. (The wvertex neighborhood
triangles are identical to the group of triangles “the first
rng” in [17].) When the contact occurs in one triangle, the
triangles in the neighborhood are selected and subdivided.
We can repeat this process if finer resolution is required.

Although the PN triangulation algorithm significantly
reduces the storage requirements and is easy fto
implement, the flatness from original triangles is still
remained in subdivided triangles and it is quite noticeable.
Hence the extra smoothening or interpolation process is
necessary to remove the flatness.

The interpolation of a variable u(x) is:

Jul
u' =) a;(x)é,
i=l

where ii; is the value of ui{x) and &, is a basis function at

node ‘i The selection of a set of basis functions
determines the performance of the interpolation. In our
application, we require local approximations, high
convergence rate, and, of course, computational
efficiency. We select two techniques for generating the
basis functions: the moving least squares technique and
the Shepard partition of unity approach [26]. The moving
least squares functions reduce to the Shepard functions as
a special case.

Both these techniques use weight (or window)
functions (W;(x)) which are radial functions with compact
support (i.e. these functions are highly localized, being
nonzero in only a small region of the domain). They allow
the localization of the approximation and result in a
banded matrix. The influence of a node is governed by a
decreasing radial weight function, which vanishes outside
the domain of influence of the node. Figure 3 shows the
interpolation functions in one-dimension.

Using a set of nodal points {x,} 1 =1 2. N the

approximation u”(x,y,z) is
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Figure 3. The interpolation functions in 1D

If moving least squares functions are used, then

pT=0l x y z]
] Xl }r| zl
1 %, ¥, z;
P=11 x3 y; 2
1 xy ¥n 2w

A=P"wWP, B=P"W
W = Diag(w,," Wy )
On the other hand, if the Shepard partition of unity

approach is taken, the Shepard function at nede ‘i’ is
defined as

For both the cases, the choice of a radial weight
function W, determines the degree of continuity and

differentiability of the approximation as well as the cost of
computation. We choose quartic spline weight functions:

e 1-6m* +8m’ -3m* 0<m<l
! 0 m>1

where m= (j|x = I..||fr".)
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The choice of the radius of influence r, at node 1" is
also important as it determines the number of nodal points
included in the influence of node *i'.

Both these technigues can generate smooth local
enhancements. The moving least squares method offers
higher convergence rates but is computationally more
expensive than the Shepard partition of unity approach. In
this work we have used the Shepard function for real time
implementation.

We would like to note that our technique is for purely
geometric smoothening since no mechanics or material
properties are considered in the computation as shown in
[9, 27]). However, this leads to a significantly improved
visual display of the deformation field.

Figure 4. The comparison of deformations. (a)
Unmodified cube model (b) Deformation with the
coarse model {¢) Coarse model with local subdivision
and smootheing using Shepard functions

4. Examples

Figure 4 compares the deformation of a cube using
(b} a coarse model and (c) a coarse model with local
subdivision and smoothing using Shepard functions. In (c)
a smooth and visually plausible deformation field is
observed compared with (b).

Now let us consider a realistic organ model. Figure 5
shows the deformations of & kidney model generated using
the techniques described in this paper. We use a Microsoft
WinNT based personal computer (Pentium III 900 MHz
processor) with a high-end graphics accelerator (NVDIA
TNT Mé64') and the Phantom force feedback devices from
SensAble Technologies Inc.  The source code is written
in C++ using the OpenGL library for graphics rendering
and Ghost SDK for haptic rendering. An update of 40 Hz
for the graphics loop and | kHz for the force feedback
loop are obtained. Figure 5 shows the deformed human
kidney model with only global model and multiresolution
model. We used the material properties like Young's
modulus from literature[28].

! Recently ATI Technologies Inc. (www.aticom) has developed
hardware support for global PN Triangulation.



Figure 5. The deformed kidney with only global model
(left) and the multiresolution model (right)

5. Concluding Remarks

In this paper, we have presented an efficient
multiresolution, modeling approach for the simulation of
tool-tissue interactions in real time medical simulation. A
coarse global model employing the boundary integral
formulation is coupled to a refined local enhancement
technique around the vicinity of tool-tissue contact area. A
graphical smoothening scheme using localized
interpolation functions such as Shephard functions are
used in the vicinity of tool-tissue interactions. The global
maodel is, however, used to compute the tool-tissue
interaction forces. The local enhancement technique
makes it possible to avoid the use of a high-resolution
model over an entire domain, which is computationally
inefficient. The techniques deseribed in this paper are
equally applicable to the finite clement based
discretization. The finite  element technique has
advantages over the boundary element technique in the
modeling of nonhomogeneous and nonlinear media.

A limitation of the current approach is that the
refinement in the tool-tissue interaction region is purely
geometric. Physically based techniques are possible, but
computationally expensive, and that is part of on-going
research. Research also needs to be done in extending the
model to the sinmlation of such processes as surgical
cutting.

6. Appendix
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A. Construction of PN Triangle

The geometry of a curved PN triangle starts from the
general equation of a cubic patch b, The normal vector of
each subdivided triangle follows the normal of the cubic
path b.

b: R*=>R*, forw=l—u—-v, uv,wz0

blu,v,w)=

i+ j+k=3

Ak .. il
bthHVW

= buoW +bygtt® + by’ + by 3Wu
b1 307V + by 3wV + by, 3uv?
+b,,, 6wuy

Coefficients are also called control points and become
vertices of newly generated a set of smaller triangles. For
given positions P1, P2, P3 and normal vectors N1, N2, N3
of three vertices as shown in Figure 6, control points of
the curved PN triangle are defined as follows:

bag = P
bozo =P,
bgos =Py
Wi ={Pj —-P)N;

by = (2P + P, — w3 N,)/3

bgai = (2P + P, —w3;Ny)/3

big2 = (2P; + P, — w3 N;)/3

h‘zul =(2P-| +P3—w|3N1}.|'f3

E  =(byyg +byy +bgyy +bgjz +bygy +byg)/6
by, =E+(E-V)/2

For a better surface appearance, the normal vectors can
be computed separately with linear or quadratic variation
(See [25]). But the computing cost for these computations
would be doubled.



Figure 6. The inputs and outputs of the PN Triangle
algorithm
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