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Robust Deconvolution of High-Frequency
Ultrasound Images Using Higher-Order
Spectral Analysis and Wavelets

Suiren Wan, Balasundar 1. Raju, and Mandayam A. Srinivasan

Abstract—Deconvolution of high-frequency {(30-40 MHz)
ultrasonic images of human skin was studied in vivo. Sepa-
rate one-dimensional (1-D) functions for the axial and lat-
eral profiles were first estimated using higher-order spectral
methods. Subsequently, deconvolution was implemented us-
ing a regularized inverse Wiener filtering of the wavelet and
scaling coefficients that were obtained after a wavelet de-
composition of the RF signals. Deconvolution was first per~
formed in the axial direction, then in the lateral direction.
The methods were applied to data obtained from the skin
of 16 volunteers using three different transducers. Signifi-
cant improvements in both the axial and lateral resolutions
were obtained in all the cases. Features such as hair follicles
in the dermis and fingerprints on the surface of the finger
were more clearly displayed in the processed images com-
pared to the original images. The results indicate that the
deconvolution method using higher-order spectral methods
and wavelet analysis could significantly improve the quality
of high-frequency ultrasonic skin images.

I. INTRODUCTION

LTRASOUND images are blurred in both the axial and

lateral directions due to the finite resolution of the
imaging system. A convenient model to represent this blur-
ring is to express each echo line signal y{n) (RF signal
corresponding to one A-scan) as a convolution of a systemn
function h{n) with a tissue reflectivity function z(n):

y(n) = h(n)*a(n) +n(n), (1)

where n{n) is an additive noise term. A similar expres-
sion also can be written for the lateral smearing due to
the finite beam width. Deconvolution, the process of re-
covering the original z{n) from measurements of y{n), not
only serves to improve the resolution of the images, but
also tends to make the appearance of the images uniform
across many subjects by removing system-dependent ef-
fects. Several authors [1]-[5] have studied the deconvolu-
tion process applied to ultrasound imaging. In most of the
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methods, the system function h(n} is often considered un-
known and is estimated during the deconvolution process
itself. Typically, the signals z(n) and h{n) are separated
in the cepstrum domain. The cepstrum of a signal is de-
fined as the inverse Fourier transform of the logarithm of
the Fourier transform of that signal. The basic assump-
tion in this method is that the two signals have different
cepstral signatures that can be clearly distinguished. Al-
ternate definitions of the cepstrum such as the square root
cepstrum and generalized cepstrum also have been shown
to be useful for deconvolution {6]. The limitation of this
approach is that it is hard to separate the two signals
z(n) and h{n) in the cepstral domain because a simple
“cut-off” to separate the two may not exist. For instance,
there is no a priori reason to believe that the cepstrum
of h(n) is limited to the first few terms and that of the
signal z{n) occupies the higher terms. When a cut-off is
used to separate the two, the estimated h(n} inherently
contains the effects of x{n). Another approach to decon-
volution uses the cepstrum of not y(n}, but rather of the
higher order cumulants of y(n) (3], [7]. This method is ap-
plicable only for non-Gaussian tissue signals z(n). If the
assumption of non-Gaussianity is satisfied; this method
offers many advantages over the previous method. The
separation of the two signals h(n) and z(n) is straight-
forward, and no assumptions regarding the cepstral sig-
natures of h(n) and x(n) are needed. Also, the deconvo-
lution process is immune to additive Gaussian noise, as a
Gaussian signal has zero cumulants of order greater than
two [8].

Our primary interest in this work is in improving the
image quality of high-frequency ultrasound {30-40 MHz)
images of skin tissues. Due to finite resolution, features
such as the fingerprints, sweat glands, hair follicles, and so
forth often appear blurred in ultrasound images of the skir.
Although the blurring can be reduced by using very high
frequency (100 MHz) ultrasound [9}, the depth of imag-
ing at these frequencies is severely limited due to the in-
creased attenuation. The relevant ultrasonic frequency for
most clinical dermatological applications is in the range
30-40 MHz. Hence, deconvolution tools are important in
improving image quality of skin images. In our previous
study, we showed that the envelope signals from skin tis-
sues are non-Rayleigh distributed when data were collected
using transducers that are typically used in skin imag-
ing [10]. This implies that the corresponding RF signals
are non-Gaussian. Because of this, the cepstrum method,
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based on higher-order cumulants. is of particular impor-
tance, and therefore, it is used in this work.

In practice, the deconvolution process usually is accom-
plished in two steps. In the first step, the system function is
estimated using the measured signal y(n) using one of sev-
eral cepstrum-based methods. In the next step, the tissue
signal xz{n) is estimated through appropriate regularized
inverse methods. Commonly, the Wiener filter is used to
recover 2(n) from noisy measurements of the signal 4(n).
However, the Wiener filter implemented in the Fourier do-
main is not well suited for representing spatially localized
phenomena such as the edges, ridges, and sharp bound-
aries of images because the Fourier basis functions lack
Iocalization in time or space. This usually presents as a
Gibbs phenomenon on edges and boundaries on which the
ringing distorts the localized features. This problem can be
avoided through the use of wavelets that have localization
in both time and frequency (scale). Because wavelets are
scaled waveforms, by moving through scale, various im-
age structures such as ridges and boundaries in fingertip
skin can be selectively characterized. Unlike Fourier meth-
ods that rely on a single basis exp(jwn), wavelets provide
flexibility in the choice of the basis function that can be
selected to match the transmitted pulse. An additional ad-
vantage with wavelet analysis is that the signals can be
sparsely represented with a few nonzero coeflicients, lead-
ing to efficient methods for tasks such as compression and
denoising. Hence, in this work, a regularized deconvolution
technique based on wavelets, which has been proposed by
Neelamani et al. [11] is used to implement the deconvolu-
tion of high-frequency ultrasound images of the skin once
h(n) is estimated using higher-order spectral methods.

This paper is organized as follows. In Section II, the
process of estimating the system function using higher or-
der cumulants is described. In Section 1II, the wavelet-
based regularized deconvolution method is presented. In
Section [V, experiments and results on deconvolution ap-
plied to high-frequency ultrasound images of the skin are
described. The axial and lateral deconvolution steps were
assumed to be separable for the sake of simplicity. Because
the process of image formation actually occurs in the RF
domain rather than the envelope domain, the deconvolu-
tion procedure is implemented first in the axial direction,
then in the lateral direction. Section V concludes the paper
with a discussion of the results.

II. ESTIMATION OF SysTEM FuNcTION USING
HIGHER-ORDER SPECTRAL ANALYSIS

The system functions in both the axial and lateral direc-
tions were obtained using higher-order spectral methods.
We use the notation h{n) to represent both the axial and
lateral systemn functions without loss of generality. In (1),
h{n}is a deterministic, causal, FIR filter of length M, z(n)
is the tissue response function, which is assumed to be sta-
ticnary, white, zero mean and non-Gaussian, and n{n) is
a zero mean Gaussian noise that is independent of =(n).
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The third-order cumulant of the zero mean signal y(n}) is
given by [8], [12]:

cy(m1,ma) = Ely(n), y(n +mi), y(n + m2)
M-1
=Yg Z R(KYR(k + mq)h(k + ma), 2)
k=0

where v, = E[z3(n)] is a constant equal to the third cu-
mulant of the zero mean signal x(n), which is assumed
to be nonzero. The expression F|] represents statistical
average. The bispectrum Cy(z1, z2) is defined as the 2-D
Z-transform of the third-order cumulant:

Cylz1, 22) = Z ch(mhmg)zl—mlz{mg. (3)

From (2) and (3) we get:
Cy(z1. 22) = Yo H (z1)H(22)H (271 23") . (4)

The bicepstrum of the third-order cumulant is defined as
the inverse 2-D z-transform of the logarithm of the bispec-
trum:

by(ﬂll,?ng) = Z_l [h’l (Cy (21,22)” - (5)

The bicepstrum &;(my, ms) can be computed using the
following expression [13]:

1 Fmicy (mq, ma)]
by(m,mz) = ——F l{ F ey (m1,ma)] }’ ©

where F and F~1 represent 2-D fast Fourier transform
(FFT) and its inverse, respectively.

In order to relate the bicepstrum to the system function,
consider the logarithm of the bispectrum in (4):

In{Cy(z1, 72)} = In{a) + In(H(21))
+In(H(z)) +1In(H (2 "2 1)), (7)

Denoting the cepstrum of h{n) as i(n) and combining {5)
and (7), we have

ZZby(ml,mg)zl—mlz;mﬂ = ln(fym)+z h{my)zy™
™

my Mg

+ Y hma)z ™ kY

7], T2 =M1

- [111(“/$)5(m1)5(m2) + h(ma)d(ma)

my M2

+ h(mg)6(m1) + h{—m)6(my — mg)] 2] Mz (8)

h(my )2 20

Thus fL(n) can be obtained for all n # 0 by evaluating the
bicepstrum along the diagonal my = ms:
h(n) = by{—n,—n)  n#£0. )

The value of A(0) cannot be determined as v, is unknown,
but its exact value is not needed as a different 2({0) only
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results in a different overall scaling for the pulse h(n). We
get the estimated hin):

h(n) = 27 {exp [z (ﬁ(n))] } ,

where the symbols Z(.) and Z=1(.) represent the Z trans-
form and its inverse, respectively. To summarize, we first
compute the bicepstrum by(my,ma) of the recorded sig-
nal, evaluate it along the diagonal to obtain A(n) (with
an appropriate normalization determined by the choice of
R(0)), and compute the inverse cepsirum to obtain the
system function h{n). It is worth mentioning that A(n)
and z{n) are decoupled in (4), as the effect of z(n) ap-
pears only as a multiplicative constant. This means that,
for non-Gaussian tissuc signals with nonzero third cumu-
lants, the estimated system function k(n) is theoretically
independent of the tissue being used to determine it. As
demonstrated by our results, h(n) estimated from only one
subject was subscequently used for deconvolution of data
from all subjects. This is generally not possible with first-
order cepstral methods.

(10)

11I. WAVELET DECONVOLUTION METHOD
A. Discrete Wavelet Transform

A signal of length 2% can be represented in the wavelet
domain as follows:

Jo2W-n 9N =)
ym) =3 S dutp(n)+ Y andn(n), TN,
J=1 k=1 k=1 (11)

where f is the mumber of levels in the analysis of the func-
tion y(n), dpt;e(n) is referred to as the detail component
of y(n) at scale 7 and location k, and a jr¢ jr(n) is referred
to as an approximation of y(n) at scale J and location k.
The functions ;5 (n) and ¢z (n) are described as follows:

P(n) =27y (27— k+1),

. (12)
1<j<J, 1<k<2V,
—J .
bann) =2 Py (27 0 —k+1), 13)
1<k<2V

where #(n) is the wavelet function and ¢(n) is the scaling
function. The coefficients d;; and a5 are defined as the
inner products between y(n) and the wavelet and scaling
functions:

djk = (U wﬂ») :
ajk = (Y. Gk} -

{14)
(15)

In practice, the above coeflicients are computed effi-
ciently using a cascade algorithm that is faster than the
computation of FFTs [14]. Any signal processing task on
the wavelet domain (e.g., denoising) can be thought of as
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Fig. 1. The Daubechies wavelets used in this work. The DB14 waveles
is similar to the reflection from a plane reflector placed at the focus.
The DB6 wavelet, is roughly similar to the lateral profile of the trans-
ducer. It should be noted that the scale on the time axis is different
for the three wavelets, with DB4 having the smallest time support.

suitable manipulations of the coefficients d;;, and ajx. The
simplest rule for selecting a suitable wavelet is to choose
one that has a shape similar to that of the processed fune-
tion so that the decompaosition of the function is highly effi-
clent with fewer nonzero coefficients. Another factor is the
length of the time support allowed for the wavelet. In this
work, different wavelets all belonging to the Daubechies
family, were used at various stages in the deconvolution
process. These wavelets are denoted as DBn where n is
the order and in our convention always even (hence r
corresponds to the Haar wavelets). The three Daubechies
wavelets used in this study are shown in Fig. 1. As de-
scribed later, the DB14 and DBG wavelets were used in
the denoising stage of the axial and lateral deconvolution
processes, respectively. The DB4 wavelets were used in
thin the wavelet-Wiener filtering stage for both the axial
and lateral deconvolution stages. Additionally, the DB14
wavelet also was used for a predencising stage before at-
tenuation and diffraction compensation. These steps are
described in detail below.

—_—
= 4
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Fig. 2. Block diagram of the wavelet deconvolution method applied in the axial dircetion. The lateral deconvolution is similar but does not
contain the predenoising and attennation and diffraction compensation stages.

B. Overall Method

In this section, a brief summary of the overall proce-
dure is presented. A block diagram of the axial deconvolu-
tion process is shown in Fig. 2. The system function is as-
sumed to be estimated already using higher-order spectral
methods at the beginning of the process. Because decon-
volution techniques work better when the signal-to-noise
ratio (SNR)} is high, a prenoising procedure is first applied
to the RF data. In the case of high-frequency skin imag-
ing, a noncontact transducer placed above the skin surface
is used, because of which the recorded RF data contains
signals from the coupling medium (water) which is essen-
tially receiver noisc. The predenoising procedure serves to
minimize this noise so that diffraction compensation eas-
ily could be applied to the data. Otherwise, after compen-
sation, any noise present at regions away from the focus
would be amplified. After predenoising, compensation for
both attenuation and diffraction is applied. After compen-
sation, a two-stage deconvolution method is applied. The
first stage consists of the usual regularized inverse Wiener
filtering that gives a preliminary estimate of the tissue
function denoted as x1(n). The second stage consists of
a wavelet domain denoising together with Wiener filter-
ing of the wavelet coefficients that gives the final estimate
Z(n). Once the axial deconvelution is done, the lateral de-
convolution is done on the axially deconvolved RF data in
a similar manner, but without the predenoising and atten-
uation and diffraction compensation stages.

C. Predenoising Using Wavelets

The recorded RF signals were denoised using a thresh-
old method [14], |15] that set somec of the finest scale
wavelet coefficients to zero. Two kinds of thresholding
commoly used are the soft and hard thresholding meth-
ads. In our work, no apparent difference was found between
the two, and the hard thresholding was used:

dik if ‘d1k| >T
diy = { 0

. 16
if |dye] < T (6)

The threshold value was chosen to be equal 1o T =
o+/2log, I where L is the length of the RF signal and
o is the noise standard deviation, which was taken to be
1.5 times the median of the finest scale wavelet coefficients.
The DB14 wavelets were used in this step.

D. Attenuation Comnpensation

The deconvelution process requires the backscattered
signals from a particular tissue to be spatially invariant
with respect to depth. One effect that causes the echo sig-
nals from the same tissue to change with depth is atienu-
ation. To compensate for attenuation, a previously deter-
mined attenuation coefficient of 0.2 dB/mm/MHz for skin
was used [16]. Attenuation compensation was applied to
the RF echo signals at the transducer’s center frequency.

E. Diffraction Compensation

Another effect that causes the echo signals to change
with depth is diffraction due to the use of focused trans-
ducers. This effect is frequency dependent, with higher fre-
quencies being more tightly focused and showing a larger
variation with depth. To compensate for this effect, ana-
lytical expressions developed by Chen et al. [17} were used
to compensate the echo signals. We also had confirmed in
a previous work that these analytical expressions were rea-
sonably accurate [16]. The diffraction compensation curves
were computed at the transducer’s center frequency.

E. Deconvolution with Wavelets

Deconvolution methods commonly require regulariza-
tion techniques due to the presence of noise as well as ze-
ros in the system transfer function. The regularized Wiener
inverse filier is one such example. However, the Wiener fil-
ter is commonly implemented in the Fourier domain and is
not well suited for signals that contain localized phenom-
ena such as edges. These features are distorted during the
processing. leading to ringing effects. The use of wavelet
transforms overcomes this problem due to the ability of
wavelets to capture localized phenomena. The wavelet-
vaguelette decomposition (WVD) method developed by
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Donoho [18], performs a simple inversion in the Fourier do-
main using H () to obtain a noisy, unbiased estimate of
the input, followed by “wavelet shrinkage” in which some
of the wavelet coefficients are reduced depending on the
variance of the noise. The WVD method has the drawback
in that the noise variance becomes large when the system
function contains zeros, making the method ill-posed. A
hybrid method combining the regularized Wiener filter in
the Fourier domain and the WVD approach, was proposed
by Neelamani et al. [11] to overcome this limitation. In the
present work, we have adapted this method for deconvo-
lution of high-frequency ultrasound data. This method is
robust due to the combination of the regularized Wiener
filter that can handle zeros in the system transfer function
and the wavelet method that avoids the ringing artifacts.
The procedure consists of two steps: .

1. Regularized Inverse Wiener Filtering: An initial es-
timate of z(n) denoted as z1(n) is first obtained using the
regularized ‘Wiener inverse filter W (f):

Xl{f) =
W{f) =

V(Y (f)
H7(f) P, (f) ;

|H () Py (f) + 00

where X, {f) and Y (f) are the Fourier transforms of z1(n)
and y(n), respectively; Py, (f) is the power density spec-
trum of 1 (n); o is regularization parameter; and o is the
uoise variance. Because Py, (f) is unknown to begin with,
it was estimated with using an iterative Wiener method
[19]. A value of @ = 0.1 was found to be suitable after
a few trials. The noise variance o was calculated as the
median of the finest scale wavelet coeflicients as described
by Donoho and Johnstone [15].

2. Wawvelet Shrinkage and Wavelet- Based Wiener Fil-
tering: Due to limitations of Fourier domain processing,
z1(n) has distortions due to the presence of edges and
boundaries. In order to improve the signal, z;(n) is de-
composed on the wavelet domain and a denocising of the
wavelet coeflicients is performed:

(a7)

J 2N-i 2N =)
mmy =3 3 b+ Y ahuglin), T<N,
j=1 k=1 k=1 (18)

where d§ . and al, are the wavelet and scaling coefficients
after the application of the dencising threshold:

<:c1, Jlk> i [(z1, 5 )| > 0 s

dhy = ) " . e

1 Il:¢jk SO'%,
o Jlandh i [{e1600)! > of, (19)
*~ o i [(wr, @l < ob

The DB14 and DB6 functions were used in this step,
depending on whether axial or lateral deconvolution is be-
ing performed, respectively. The superseript I is used to
distinguish the wavelets and coefficients from another set
of wavelets and cocfficients mentioned below. The number
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of levels J was three. It should be noted that, in general,
the threshold parameters depend on the scale and are dif-
ferent for the wavelet and scaling coefficients. Therefore,
estimates of the noise at various scales were obtained using
the median of the cocfficients at each scale.

After the signals were denoiscd, the signal estimate #(n)
was abtained using Wiener filters in the wavelet domain,
where the filtering is done far the wavelet coefficients [20]:

J 2*"-J
:Z “)"‘Zﬁ% Ji J<N,
i=1 k=1 (20)
where:
L o)
11 7 _ i1
‘dﬂ“‘ N 10% and dﬂ}’} - gm’q’b-}?g
all |l (m,qf) @y, = {2, O41) - (21)
Ak = _I_W:
|a'-f + 'Uqﬁj

The DB4 wavelet and scaling functions were used for
this last step for both the axial and lateral deconvolution
steps. In general, a wavelet representation with a longer
time support is preferred for dencising, and a smaller time
support such as DB4 is preferred for the final Wiener fil-
tering,.

IV. EXPERIMENTS AND RESULTS
A. Ezperimental System

The experimental system consisted of a mechani-
cally scanned, single-element PVDF transducer (Pana-
metrics, Waltham, MA), a pulser/receiver {Panamet-
rics; Model 5900), a three-axis scanning system (Parker-
Hannifin/Compumotor, Cleveland, OH), a high-speed
A2D board (Gage Applied Sciences, Montreal, Canada),
and a personal computer to control mechanical scanning
and dava acquisition. Three transducers were used in this
study in order to demonstrate robustness of the meth-
ods under different systems. The specifications of these
transducers are shown in Table 1. The transducers were
mounted on the three-axis stage that had encoders on the
x- and y-axis that provided a high lateral positioning ac-
curacy of 1 pm. The backscattered signals were sampled
at a sampling frequency of 200 MHz. The spacing between
two adjacent echo lines was 25 pm for transducers I and II,
and 15 pm for transducer II1. Water was used as a coupling
medium between the transducers and tissues.

B. Human Subjects and Tissues

A total of 16 subjects, 8 male and 8 female, were used in
this study. Table II describes the subject population, the
number of data sets collected for each transducer, and the
body sites imaged. More data were collected from trans-
ducer I as this transducer provided the optimum compro-
mise between penetration depth and resolution necded for
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TABLE I
TRANSDUCERS UsgD 1N Tars STupy.!

I I IT1
Transducer (Model PI50)  (Model PI75)  (Model PI3005)
Center frequency 33 MHz 30 MHz 44 MHz
—6 dB bandwidth 28 MHz 40 MHz 50 MHz
F-number 2 4 2
Focal length 12.7 mm 12.7 mm 4 mm
Diameter 6.35 mm 3.175 mm 2 mm
Axial resolution 27 pm 19 pm 15 pym
Lateral resolution 83 pm 200 pm 68 pm

IThe axial and lateral resolutions were computed based on theoretical —6 dB beam widths. Axial resolu-

3 —— ko)
hon = o g

where ¢ is the speed of sound, and BW is the —6 dB bandwidth of the signal reflected

from a planar reflector at the focus. Lateral resolution = Frum x A where Frnum is the f-number of the
transducer specified by the manufacturer and A is the wavelength corresponding to the center frequency of
the signal reflected from a planar interface at the focus.

TABLE II
SUBJECTS AND BoDY SITES STUDIED IN THIS WORK.

Number of Age Number of
Transducer Subjects Mean (SD)  Data sets  Body sites
I (PI50) 14 (7 male, 7 female) 36 (14.3) 22 Forearm dorsal, 6
forearm volar, 9; thigh, 3;
fingertip, 2
I (PI75)! 2 (2 male) 31, 47 2 Forearm dorsal, 2
III (PI30058) 7 (3 male, 4 female) 38 (12.3) 7 Forearm dorsal, 1;

forearm volar, 6

1For transducer II, the actual ages for subjects are given.

dermatological applications. Transducer 1T on the other
hand had poorer lateral resolution and hence only two sub-
jects were studied to demonstrate the methods. A total of
31 data sets were studied.

C. Estimation of System Functions

For each transducer, the axial and lateral system func-
tions were estimated using one subject using the higher-
order spectral method and were subsequently used for the
deconvolution for all data sets obtained using that trans-
ducer. Both the axial and lateral pulses were estimated on
the RF data corresponding to the dermis, after suitable
correction for the attenuation and diffraction effects. For
the axial pulse, about 200 echo lines of 128 samples each
were used (i.e., 200 averages were used to compute the
mearn third order cumulants). A similar number of wave-
forms were used for determining the lateral point spread
function. Fig. 3 shows the estimated axial and lateral pro-
files for transducer 1. It can be seen that the estimated
axial pulse and the DB14 wavelet in Fig. 1 are quite sim-
ilar. Also, the DB6 wavelet has the closest match to the
lateral point spread function of all the Daubechies wavelet
functions.

D. Deconvolution Results

Fig. 4 shows an example of an image before and after
deconvolution obtained using transducer 1. It can be seen

that the image after deconvolution is able to more clearly
show hypoechoic structures in the thigh, presumably hair
follicles. It should be noted that the number of samples
per echo line is usually much larger than the number of
echo lines; therefore, the data were resized to maintain the
same scale in the axial and lateral directions before dis-
playing the images. This resizing tends to offset the reso-
lution improvement in the images. In order to quantify the
improvement in resolution due to the deconvolution, the
—6 dB correlation lengths of the RF data corresponding
to the images were computed before and after deconvolu-
tion {before image resizing). Similar measures have been
used previously by other researchers [3], [7]. It also should
be pointed out that the —6 dB correlation length is not
the same as the axial and lateral resolutions mentioned in
Table I. The resolution gain was defined as the ratio of the
—6 dB corrclation lengths of the RF data before deconvo-
lution to that after deconvolution {before any resizing was
done for display purposes). For this data set, the axial and
lateral resolution gains were 1.88 and 3.65, respectively.

Fig. 5 shows an image of the fingertip region obtained
on a 31-year-old male subject using transducer I. After
deconvolution, the fingerprints on the surface appear more
continuous rather than broken as in the original image.
The axial and lateral resolution gains for this data set were
2.35 and 4.92, respectively.

Fig. 6 shows an image of the forearm skin of a 31-year-
old male subject obtained using transducer II. For trans-
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Fig. 3. Estimated axial and lateral system functions for transducer I.

ducer 1I, the original lateral resolution was poorer than
that of transducer I due to its larger f-number. Therefore,
the improvement in resolution is more clearly seen in this
case. The axial and lateral resolution improvements were
5.4 and 14.8, respectively.

Table ITT shows the results for all data sets studied in
this work. The improvements in axial and lateral resolu-
tion were better for transducer II, which is expected as its
original lateral resolution was the poorest to begin with.
Transducer III had better axial and lateral resolution for
the original images due to its higher center frequency and
larger bandwidths; therefore, the improvement was smaller
than those of the other two transducers. The improvement
in axial resolution also is proportional to the improvement
in lateral resolution, indicating that the axial and lateral
directions are not truly uncorrelated.

V. Discussion AND CONCLUSIONS

This paper presents a robust method for deconvolution
of high-frequency ultrasound skin images using a combina-
tion of higher-order spectral methods and wavelet analysis.
These methods also are applicable to ultrasonic images of
other tissues. For the general deconvolution problem in
which the system function also is unknown, a unique so-
lution for both the system function A(n) and the tissue
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signal x(n) does not exist. For example, two trivial solu-
tions that satisfy the deconvolution problem in the absence
of noise are h{(n) = 8(n), z(n) = y(n) and h{n) = y(n),
z(n) = d(n}. Thus, some assumptions regarding the sys-
tem function and/or the tissue signal needs to be in or-
der to obtain a mcaningful solution. One such assump-
tion is that the system function h{n) and tissue function
z(n) have different cepstral signatures and can be sepa-
rated [2]. A further assumption that the system function
is minimum phase simplifies the procedure as the com-
plex cepstrum can be computed from a knowledge of the
real cepstrum and phase unwrapping problems are avoided
[5], [21]. Bayesian deconvolution, which uses a stochastic
approach, is another method for image restoration. Com-
monly this method is implemented assuming a Gaussian
model for the probability density function of tissue reflec-
tivity [4]. In our work we assumed that the tissue signal
z{n) was non-Gaussian, which was supported by our ear-
lier results [10]. Therefore, we used higher-order spectral
niethods to extract the pulse. An advantage of this method
is that the tissue signal and the pulse signal easily can be
decoupled. Therefore, & pulse or lateral point spread func-
tion estimated from one data set could be used for ail
subsequent data sets, making the procedure simple and
efficient. This was demonstrated in this work, where onlv
one pulse was used for all subjects and meaningful results
were obtained.

Taxt [6] has compared seven different deconvolution
methods that use cepstral computations and found thas
first order cepstral methods might have an advantage over
higher order methods for conventional 1-10 MHz ultra-
sound. However, even in that work, data from liver and
gastric antrum showed good results with higher order
methods, presumably because the echo signals were non-
Gaussian. In our earlier work we showed that envclope
signals collected from the transducers nsed in this work
from skin tissues are non-Rayleigh; therefore, the corre-
sponding RF signals are non-Gaussian. In particular we
have used third-order methods, which require the addi-
tional assumption of nonzero third-order cumulants. Phys-
ical reasons for such assumptions were given by Abeyratne
et ol. [22]. The tissuc is modeled as a collection of dif-
fuse, mixed, and resolvable periodic scatterers, and non-
Gaussianity arises due to the mixed and periodic resolv-
able components. Third-order methods were used because
they are computationally simpler than the fourth or even
higher-order methods.

To the best of our knowledge, all previous deconvolution
methods in ultrasound have used a simple inverse Wiener
filtering after pulse estimation. In the present work, we
have used a wavelet-based approach to the inverse Wiener
filtering to estimate the tissue signals. Qur experience thus
far is that the wavelet-Wiener method is better than the
simple Wiener method. A useful side comment is that
wavelet-based methods are more natural in pulse-echo ul-
trasound analysis in general as a specific wavelet could
be easily chosen to very efficiently represent the signal.
Therefore, tasks such as filtering, denoising, and compres-
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Fig. 4. {a) Image of the skin at the thigh region of a 30-year-old male subject obtained using transducer I before deconvolution. The field

of view is 5 mm wide by 4.5 mm. (b) The same image after axial and lateral deconvolution. The hypoechoic structures (arrow marks) are
pussibly hair follicles, and they are better displayed in the deconvelved image than in the original image. Panels (¢) and (d) show the axial
than those of the original image.

and lateral correlation functions of the images, respectively. The correlation functions after deconvolution have smaller main lobe widths
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Fig. 5. {a) Image of a fingertip skin of a 31-year-old male subject obtained using transducer 1 before deconvolution. The field of view is
5 mm wide by 4.5 mm deep. (b) The same image after axial and lateral deconvolution. The fingerprints on the surface appear better in the

deconvolved image in that they appear more continuons. Panels (c} and (d) show the axial and lateral correlation functions of the images,
respectively. The correlation functions after deconvolution have smaller main lobe widths than those of the original image.
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Fig. 6. (a) Image of the skin at the forearm region of a 31-year-old male subject obtained using transducer 11 before deconvolution. The field
of view is 6 mm wide by 4.5 mm. (b) The same image after axial and lateral deconvolution. The improvement in resolution in the deconvolved
image can be seen. Panels (¢) and (d} show the axial and lateral correlation functions of the images, respectively. The correlation functions
after deconvolution have smaller main lobe widths than those of the original image.

TABLE III
RESOLUTION GAINS OBTAINED DUE TO DECONVOLUTION.!

Number of  Axial resolution gain  Lateral resolution gain

Transducer  data sets {mean £ SD) (mean £ SD}
1 (PL50) 22 1.99 £ 0.34 4.01 & 0.88

II (PIT5)% 2 4.1, 5.4 11.1, 14.8

I (PI3005) 7 1.21 + 0.39 276 £ 0.51

!The results are based o —6 dB correlation lengths in the axial and lateral directions of the RF signal.

2For transducer 11, the actual values are shown.

sion could be very efficiently accomplished using wavelet
representations.

In this work the axial and lateral deconvolution meth-
ods were decoupled for the sake of simplicity. For a given
tissue, the finest resolution possible in the axial direction
depends on the sampling frequency. The resolution im-
provement in the case of transducer II was higher even
in the axial direction compared to those of the other two
transducers, even though the same sampling rate was used
for all transducers. This is most likely because the axial
and lateral signals are not fully decoupled and each A-
scan is not strictly a representation of one line of data.
Therefore, in future studies, full 2-D deconvolution meth-
ods using wavelet-Wiener methods might be more useful.

The deconvolution model in (1) is a simplified one in
that other effects such as phase aberrations have not been

accounted for. In the field of astronomy in which deconvo-
lutionn methods have been used successfully, phase aberra-
tion correction (using adaptive optics) is often done before
deconvolution. Such a procedure is not currently possible
with high-frequency ultrasound as phased-array transduc-
ers are not available yet; but, with the development of such
systems in the future [23], it may be possible to combine
phase-aberration correction and deconvolution to signifi-
cantly improve the quality of high-frequency ultrasound
images.
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