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Robust Deconvolution of High-Frequency 
Ultrasound Images Using Higher-Order 

Spectral Analysis and Wavelets 
Suiren Wan, Balasundar I. Raju, and Mandayam A. Srinivasan 

Abs t r ac t~Deconvo lu t ion  of high-frequency (30-40 MHz) 
ultrasonic images of human  skin was studied in vivo. Sepa- 
r a t e  onedimens iona l  (1-D) functions for t h e  axial  a n d  lat- 
eral profiles were first es t imated  using higher-order spectral  
methods.  Subsequently, deconvolution was implemented us- 
ing a regularized inverse Wiener  filtering of t h e  wavelet a n d  
scaling coefficients t h a t  were obtained after a wavelet de- 
composition of t h e  RF signals. Deconvolution was first per- 
formed in t h e  axial direction, t hen  in t h e  la teral  direction. 
T h e  methods  were applied t o  data obta ined  f rom the  skin 
of 16 volunteers using th ree  different transducers.  Signifi- 
cant improvements  in b o t h  t h e  axial and  la teral  resolutions 
were obtained in all t h e  cases. Features such as hair follicles 
in t h e  dermis  a n d  fingerprints o n  t h e  surface of t h e  finger 
were more clearly displayed in t h e  processed images com- 
pared  t o  t h e  original images. T h e  results indicate t h a t  t h e  
deconvolution method using higher-order spec t ra l  methods  
a n d  wavelet analysis could significantly improve t h e  quality 
of high-frequency ultrasonic skin images. 

I.  INTRODUCTION 

LTRASOUND images are blurred in both the axial and U lateral directions due to the finite resolution of the 
imaging system. A convenient model to represent this blur- 
ring is to express each echo line signal y(n)  (RF signal 
corresponding to one A-scan) as a convolution of a system 
function h(n) with a tissue reflectivity functiori ~ ( 7 1 , ) :  

?/(n,) = h(n)*z(n,) + q(71): (1) 

where q(n) is an additive noise term. A similar expres- 
sion also can be written for the lateral smearing due to 
the finite beam width. Deconvolution, the process of re- 
covering the original x(.) from measurements of y(n) ;  not 
only serves to improve the resolution of the images, but 
also tends to make the appearance of the images uniform 
across man?- subjects by removing system-dependent ef- 
fects. Several authors [1]-[5] have studied the deconvolu- 
tion process applied to  ultrasound imaging. In most of the 
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methods, the system function h(n) is often considered un- 
known and is estimated during the deconvolution procesz 
itself. Typically, the signals z(n) and h(n) are separated 
in the cepstrum domain. The cepstrum of a signal is de- 
fined as the inverse Fourier transform of the logarithm 01' 
the Fourier transform of that  signal. The basic assump- 
tion in this method is that the two signals have different, 
cepstral signatures that cam be clearly distinguished. Al- 
ternate definitions of the cepstrum such as the square root. 
cepstrum and generalized cepstrum also hav-e been shown 
to  be useful for deconvolution [GI. The limitation of this 
approach is that it is hard to separate the two signals 
x(n) and h(n) in the cepstral domain because a simple 
"cut-off to separate the two may not exist. For instance, 
there is no a priori reason to believe that the cepstruni 
of h(n)  is limited to the first few terms and that of the 
signal x(n) occupies the higher terms. When a cut-off is 
used to  separate the two, the estimated h(n) inherently 
contains the effects of x(n). Another approach to decon- 
volution uses the cepstrum of not y(n) ,  but rather of the 
higher order cumulants of y(n) (31: [7]. This method is ap- 
plicable only for non-Gaussian tissue signals ~ ( n ) .  If the 
assumption of non-Gaussianity is satisfied, this method 
offers many advantages over the previous method. The 
separation of the two signals h(n) and x(n)  is straight- 
forward, and no assumptions regarding the cepstral sig- 
natures of h(n)  and x ( n )  are needed. Also, the deconvo- 
lution process is imniune to additive Gaussian noise, as i i  
Gaussian signal has zero curnulants of order greater than 
two [8]. 

Our primary interest in this work is in improving the 
image quality of high-frequency ultrasound (30-40 MHz) 
images of skin tissues. Due to finite resolution, features 
such as t,he fingerprints, sweat glands, hair follicles, and sm3 
forth often appear blurred in ultrasound images of the skin. 
Although the blurring can be reduced by using very high 
frequency (100 MHz) ultrasound [Si, the depth of i m a g  
ing at  these frequencies is severely limited due to the in- 
creased attenuation. The relevant ultrasonic frequency for 
most clinical dermatological applications is in the range 
30-40 MHz. Hence, deconvolution tools are important in  
improving image quality of skin images. 111 our previ0u.s 
study, we showed that the envelope signals from skin tic;- 
sues are non-Rayleigh distributed when data were collected 
using transducers that are typically used in skin i m a g  
ing [lo]. This implies that the corresponding RF signa'ls 

n. Because of this, the cepstruni method, 
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based on higher-order cumulants, is of particular impor- 
tance, and therefore, it is used in this work. 

In practice, the deconvolution process usually is acconi- 
plished i n  tu.0 steps. In the first step, the system function is 
estimated using the incasured signal y(n) using one of se*- 
era1 cepstruiii-based methods. In the next step, the tissue 
signal x (n )  is estimated through appropriate regularized 
inverse methods. Commonly, the Wiener filter is used to 
recover x (n )  from noisy nieasurements of the signal y(n). 
However, the Wiener filter implemented in the Fourier do- 
main is not well suited for representing spatially localized 
phenomena such as the edges, ridges, and sharp bound- 
aries of images because the Fourier basis functioiis lack 
localization in time or space. This usually presents as a 
Gibbs pheiionienoii on edges and boundaries on which the 
ringing distorts the localized features. This problem can be 
avoided through the use of wavelets that have IocaliLation 
in both time and frequency (scale). Because wavelets are 
scaled waveforms, by moving through scale, various irm- 
age structures such as ridges and boundaries in fingertip 
skin can be selectively characterized. Unlike Fourier meth- 
ods that rely on a single basis exp(jwn), wavelets provide 
flexihility in the choice of the basis function that can be 
selected to match the transmitted pulse. An additional ad- 
vantage wit.11 wavelet analysis is that  the signals can be 
sparsely represented with a few nonzero coefficients; lead- 
ing to efficient methods for tasks such as compression and 
denoising. Hence, in this work, a regularized deconvolution 
technique based on wavelets: which has been proposed by 
Neelaniani et al. [ll] is used to implement the deconvolu- 
tion of high-frequency ultrasound images of the skin once 
h(n) is estimated using higher-order spectral methods. 

This paper is organized as follows. In Section 11, the 
process of estimating the system function using liiglier or- 
der cumulants is described. In Section 1111 t,he wavelet- 
based regularized deconvolution method is  presented. In 
Section IV, experiments and results on deconvolution ap- 
plied to high-frequency ultrasound images of the skin are 
dcscrihed. The axial and lateral deconvolution steps were 
assumed to be separable for tlic sake of simplicity. Because 
the process of image formation actually occurs in the RF 
domain rather than the envelope domain, the deconvolu- 
t,ion procedure is implemented first in the axial direction, 
then in the lateral direction. Section V concludes the paper 
with a discussion of the results. 

11. ESTIMATION OF SYSTEM FUNCTION USIXG 
HIGHER-ORDER SPECTRAL ANALYSIS 

The system functions in both the axial and lateral direc- 
tions were obtained using higher-order spectral methods. 
We use the notation A(n )  to represent both the axial and 
lateral system functions without, loss of generalit:-. In (1): 
h(n) is a deterministic, causal; FIR filter of length M; z (n)  
is the tissue response function, which is assumed to he sta- 
tionary, white, zero mean and non-Gaussian, arid q(n,) is 
a zero inean Gaussian noise that is independent of x(n). 
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The third-order cumulant of the zero mean signal y(n) is 
given by [8]; [12]: 

where T~ = G [ z 3 ( n ) ]  is a constant equal to t.lie third cu- 
rnulant of the zero mean signal z(n) ,  which is assumed 
to be nonzero. The expression E[.] represent,s st,atistical 
average. The bispectruin C,(Z~:ZZ) is defined as the 2-D 
Z-transform of the third-order cumulant: 

In, 7n2 

Froin (2) and (3) we get: 

C,(Zl:Z2) = ̂ I2H(ZI)H(ZZ)H (zT1G1) .  (4) 

The bicepstrurn of the third-order cumulant is defined as 
the inverse 2-D z-transform of the logarithm of the bispec- 
trurn: 

bg(7n1,7n2) = Z-l[ ln(Cy(zl :zz))] .  ( 5 )  

The bicepstrum b,(ml,mz) can be computed using the 
following expression [13]: 

where F and F-' represent 2-D fast Fourier traiisform 
(FFT) and ibs inverse, respectively. 

In order to relat,e the bicepstrum to the system function, 
consider the logarithm of the bispectrum in (4): 

In(C,(a,zz)) = ln(y,) + l n ( H ( z ~ ) )  

+ln(H(ta))+ln(H(z, 'z, ' )) .  (7) 

Denoting the cepstrum of h(n) as h(n) and combining ( 5 )  
and (7), we have 

Thus f i(n) can be obtained for all n # 0 by evaluating the 
bicepstrum along the diagonal rnl = m2: 

h(7l) = b,(-n,: -n) n # 0. (9) 

The value of k ( 0 )  cannot be determined as T~ is unknown, 
but its exact value is not needed as a different k ( 0 )  only 



results in a different overall scaling for the pulse h(n) .  \Ve 
get the estimated h(n):  

where t,he symbols Z(.) arid Z-’( . )  represent the Z trans- 
form and its invcrsc, rcspcctively. To simimarize, we first 
compote the bicepstrurn b y ( n 2 1 ;  .rrz2) of the recorded sig- 
nal, evaluate it along t,he diagonal to ohtain f i(n) (with 
am appropriate normalization determined by the choice of 
h(O)); and computc the inverse cepstrum to obtain the 
system function h(n). It is worth mentioning that h(n) 
and ~ ( 7 % )  are decoupled in (4), as the effcct of z(n)  ap- 
pears only as a multiplicative constant. This nieaiis that, 
for non-Gaussian tissue signals with noiizero third ciimii- 
lants, the estimated systeni furictiori h(n) is theoretically 
independent of the tissue being used to determine it,. As 
denionstrated by oiir results, h(n) estimated from only onc 
subject was subsequently used for deconvoliition of data 
from all subjects. This is generally riot possible with first- 
order ccpstral methods. 

111. WA\‘ELET DECONVOLUTION b1ETHOD 

A .  Discrete Wuuelet Transform 

A signal of length 2N ~ can be represented in the wavelet, 
domain as follows: 

,, *(“,I 2 ( P - J )  

~ ( n )  = d j k l j l i k ( 4 +  u J h 4 J k ( n ) :  .J i ~ :  
3=1 k = l  k=l (11) 

where ,J is the number of levels in the analysis of the func- 
tion y(n), d;kQj:3k(n) is referred to  as the detail component 
of y(n) at scale j and location k ,  and a.J!&+.Jk(n) is referred 
t o  as an approximation of y(n,) at scale J and location k .  
The functions $ j k ( n )  and ~ J ~ ( T L )  arc described as follows: 

where $(n) is t.hc wavclct function arid 4(n) is the scaling 
function. The coefiicieiits d,k and U J I  are dcfincd as thc 
inner products betwecn y ( n )  and the wavelet and scaling 
functions: 

In practice: the above coefficients are computed effi- 
cicntly using a cascade algoritlim that is faster than the 
compntat,ion of FFTs [14]. Any signal processing task on 
the wavelet doniaiii (e.g.; denoising) can he thought of as 
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Fig. 1. The Daubechies wavelets used in this work. The DB14 waveiei; 
is similar to thc rcflection from a plane reflector placed a t  the fucus. 
The DB6 wavelet is roughly similar to the lateral profile of the trans- 
ducer. I t  should be irotcd that the scale on the time axis is differen: 
for the three wavelets, with DB4 having the smallest time support. 

suitable rnanipulatioiis of t,he coefficients d3k  and a J k .  The 
simplest rule for selecting a suitable wavelet is to  choose 
one that lias a shape similar to that of thc processed func-- 
tion so that the decomposition of the function is highly effi.- 
cierit with fcwcr noiizcro coefficients. Another factor is the 
length of the time support allowed for the wavelet. In this 
work, different wavclcts all bcloriging to the Daubechies 
family. were used at various stagcs in the deconvolutiori 
process. These wavelets are denoted as DBn wherc n i!j 

the order and in our convention always even (hence 71 = :! 
corresponds t,o the Haar wavelets). The three Daubechies; 
wavelets iised in this study are shown in Fig. 1. As de.- 
scribed later, t,he DB14 and DBG wavelets were used i n  
the denoising stage of the axial and lateral deconvolutioii 
processes: respectively. The DB4 wavelet,s were used ill 
thin t,he wavelet-Wiener filtering stage for both the axial 
and lateral deconvolution stages. Additionally, the DB14 
wavelet also was used for a predemoisimg stage before at.- 
teniiation and diffraction compensation. These steps are 
described in detail below. 
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Attenuation and 
di tkact ion 

compensation 

Estimate noise (', 'T@) 

variance 02 c 

( d:ix , 1 ( d:,k , dk ) 

B. 0 ~ ~ ~ 1 1  Method 

In this section, a brief simimary of the overall proce- 
dure is presented. A block diagrain of the axial deconvolu- 
tion process is shown in Fig. 2. The system fiinctiori is as- 
suir~cd to be estimated already using higher-order spectral 
methods at the beginning of the process. Because decoii- 
volntioii techniques work better when the signal-to-noise 
ratio (SNR) is high, a prenoising procedure is first applied 
to tlie RF data. In the case of high-frequency skin imag- 
ing, a noncontact transducer placed above the skin surface 
is used: because of which the recorded R,F data contains 
signals from the coupling medium (water) which is essen- 
tially receiver noise. The predenoising procedure serves to 
minimize this noise so that diifractiou coriipensation eas- 
ily could be applied to the data. Otherwise, after compen- 
sation, any noise present at  regions away from t.he focus 
would be amplificd. After predenoising, compensation for 
both at,tsnuation and diifract,ion is applied. After compeii- 
sation, a two-stage deconvolntion metliod is applied. The 
first stage consists of the iisiral regularized inverse Wiener 
filtering t.hat gives a preliminary estimate of the tissue 
function denoted as zl(n). The second stage consists of 
a wavelet, domain denoising together with Wiener filtcr- 
ing of the wavelet coefficients that gives the final estiinabe 
i (n ) .  Oiice the axial dcconvolntion is done: the lateral de- 
convolution is done on the axially deconvolved RF data in 
a siriiilar manner, but without the predenoising and atten- 
nation and diffraction conipensation stages. 

C. Pvedenuising Us%n,g Wuvelets 

The threshold value was chosen to be equal to T = 
o m  where L is tlie length of the R F  signal arid 
u is t,lie noise standard deviation, wliiclr was taken to be 
1.5 times the niedian of the finest scale wavelet coefficients. 
The DB14 wavelets wcre used in this step. 

D. Attenuation Compensation 

Tlie deconvolntion process requires tlie backscattered 
siguals from a particular tissue to be spatially invariant 
with respect to depth. One effect that canses tlic echo sig- 
nals from the same tissue to change with depth is attenu- 
ation. To compensate for attenuation, a previously deter- 
mined attenuation coefficient of 0.2 dB/mm/MHz for skin 
was used (16). Att,cnuation conipensatiorl was applied to 
the RF echo sigiials at the transdncer's center frequency. 

E. DiffTactiori Compensation 

Another effect that causes the echo signals to change 
with depth is diffraction due to the use of focused trans- 
ducers. This effect is frequency dependent, with higher fre- 
quencies being more tightly focnsed and showing a larger 
variation with dept,h. To compensate for this effect, ana- 
lytical expressions dcveloped by Chen et al. [17] were used 
to compensate the echo signals. We also liad confirmed in 
a previous work that tliese analytical expressions were rea- 
sonably accurate [16]. The diffraction compensation cnrves 
were compntcd at  the transducer's center freqiiency. 

F .  Decuiiwolution, wlth Wuvelets 

Deconvolution nietliods commonly require regulariza- 
tion teclirriques due to the presence of noise as well as ze- 
rosin tlie system transfer function. The regularized Wiener 
inverse filter is one siicli example. However, the Wiener fil- 
ter is commonly implemented in the Fourier domain and is 
not well suited for signals that contain localized phenoin- 
e m  such as edges. These features are distorted during the 
processing: leading to ringing effects. The use of wavelet 

The recorded RF signals were denoiscd using a thresli- 
old method [14]: [15] that set sonic of the finest scale 
wavelet, coefficients to zero. Two kinds of tlircsholding 
comrnorily used arc the soft and hard thresholdiiig meth- 
ods. In onr work, no apparent diiference was found between 
the two, and the hard thrcsliolding was used: 

transfornis overcomes this problem due to the ability of 
wavelets to capture localized phenomena. The wavelet- 
vaguclette decomposition (WVD) method developed by 

dle  if ldlkl > T 
0,  if ldlkl i T (16) dlk = 



Donoho [XI, performs a simple inversion in the Fourier do- 
main using i T 1 ( f )  to obtain a noisy, unbiased estimate of 
tlie input, followed by “wavelet shrinkage” in which some 
of the wavelet coefficients are reduced depending om the 
variance of the noise. The WVD method has the drawback 
in that the noise variance becomes large when the system 
function contains zeros; making the method ill-posed. A 
hybrid method combining the regularized Wiener filter in 
the Fourier domain and the WVD approach, was proposed 
by Neelamani e t  al. [ll] to  overcome this limitation. In the 
present work, we have adapted this method for deconvo- 
lutiori of high-frequency ultrasound data. This method is 
robust due to the combination of the regularized Wiener 
filter that can handle zeros in the system transfer function 
and the wavelet method that avoids the ringing artifacts. 
The procedure consists of two steps: 

1. Regularized Inverse Wiener Filtering: An initial es- 
timate of x(n)  denoted as q ( n )  is first obtained using the 
regularized Wiener inverse filter W(f) :  

where X , ( f )  and Y ( f )  are the Fourier transforms of x l (n )  
and y(n),  respectively; P,, (f) is the power density spec- 
trum of x l ( n ) ;  0: is regularization parameter; and u2 is the 
noise variance. Because Pz,(f) is unknown to begin with, 
it was estimated with using an iterative Wiener method 
[N]. A value of a = 0.1 was found to be suitable after 
a few trials. The noise variance c? was calculated as the 
median of the finest scale wavelet coefficients as described 
by Donoho and Johnstone [15]. 

2. W a v e l e t  Shr inkage  a n d ,  W a v e l e t - B a s e d  W i e n e r  Fil- 
tering: Due to limitations of Fourier domain processing, 
q ( n )  has distortions due to the presence of edges aiid 
boundaries. In order to improve the signal, x l ( n )  is de- 
composed or1 the wavelet domain and a derioisirig of the 
wavelet coefficients is performed: 

,, pN--1  

where dik  and a:k are the wavelet and scaling coefficients 
after the application of the denoising threshold: 

The DB14 and DB6 functions were used in this step, 
depending om whether axial or lateral decoiivolution is he- 
ing performed, respectively. The superscript I is used to 
distinguish the wavelets arid coefficients from another set 
of wavelets arid coefficients mentioned below. The number 

of levels J was three. It should be noted that, in general, 
the threshold parameters depend on the scale and are dif- 
ferent for tlie wavelet slid scaling coefficient,s. Therefore; 
estimates of the noise at various scales were obtained using 
the median of the coefficients at each scale. 

After the signals were denoiscd, the signal estimate ?(n) 
was obtained using Wiener filters in tlie wavelet domain 
where the filtering is dome for the wavclct coefficients (201: 

?(n) = 1 1 ~ ~ ~ $ ~ ~ ( T L )  + 65id;i(n)> J 5 N: 
J p--1 2 N - i  

j=1 k=l k = i  (2o:l 

where: 

The DB4 wavelet aiid scaling functions were used for 
this last st,ep for both the axial and lateral deconvolutiori 
steps. In general, a wavelet representation with a longer 
time support is preferred for denoisimg, and a smaller time: 
support such as DB4 is preferred for the final Wiener fil-- 
tering. 

IV. EXPERIMEXTS AND RESULTS 

A .  Experimental System 

The experimental system consisted of a inechani.. 
cally scanned, singleelement PVDF transducer (Pana.. 
metrics, Wiltham; MA): a pulser/receiver (Panamet-. 
rics: Model 5900), a three-axis scanning system (Parker.. 
HannifinlCompiimotor, Cleveland, OH) a high-speed 
A2D board (Gage Applied Sciences, Montreal: Canada), 
and a personal computer to control mechanical scanning 
and data acquisition. Three transducers were used in this 
study in order to demonstrate robustness of the meth.- 
ods under different systems. The specifications of these 
transducers are shown in Table I. The transducers were 
mounted on the tlirecaxis stage that had encoders on the 
x- and y-axis that provided a high lateral positioning ac.- 
curacy of 1 p i .  The backscattered signals were sampled 
at a sampling frequency of 200 MHz. The spacing between 
two adjacent echo lines was 25 iim for transducers I arid 11; 
and 15 pm for transducer 111. Water was used as a coupling 
niediuiri between the transducers and tissues. 

B. Human Subjects and Tissues 

A total of 16 suhjects, 8 male and 8 female: were used in 
this study. Table I1 describes the subject population, t.lx 
number of data sets collected for cacli transducer, and the 
body sites imaged. More data were collected from trans- 
ducer I as this transducer provided the optimum compro- 
iriisc between penetration depth and resolution nccdcd fol. 
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TABLE I 
'I'RANSDUCERS USED IN THIS  STUDY.^ 

I I1 I11 
Transdocer (Model PI.50) (h'lodel F17.5) (Model FI300.5) 

Center frequency 33 MHz 30 AIHz 44 h'lHz 
-ti dB bandwidth 28 MHz 40 M H n  50 MHz 

F-number 2 4 2 
Focal length 12.7 " 1 2 . 7 r n r n  i 4"  

Diameter 6.35 nun 3.175 mnr 2 mm 
Axial resolution 27 pni 19 pm 15 tlm 

Laterel resolution 83 1L"l 200 U ~ I  6 8  um 

'The axial and lateral resolutions were computed baed on theoretical -6 dB beam widths. Axial resolu- 
tion = ~~~~~, where c is the speed of sound, and BW is the 4 dB bandwidth of the signal reflected 
from a planer reflector at the focus. Lateral resolution = F n u m  x X where Fnum is the f-nurnbcr of the 
trarrsduccr specified by the manufacturer and X is the wavelength corresponding to the center frequency of 
the signal reflected from a planar interface at the focus. 

1ABLE I1 
SUB,lECrS AND BODY S I T E S  STUDIED I N  THIS \$'ORK. 

Number of Age Number of 
Trarrsdiicer Subjects Mean (SD) Data scts Body sites 

I ( m n )  14 (7 7 female) 36 (14.3) 22 Forearm dorsal, ti 
forearm volar. 9: thiEh. 5 
fingertip. 2 

I1 fJ'I751' 2 (2 malei 31. 47 2 Forearm dorsal. 2 
111 (FI3005) 7 (3 mile: 4 fekale) 38 (12.3) 7 Forearm dorsal, 1; 

forearm volar, ti 

'For transducer 11, the actual ages for subjects are given 

dcrnlatological applications. Transducer I1 on thc oilier 
hand had poorer lateral resolution and licnce only two snb- 
jects were studied to denionstrate the methods. A total of 
31 data sets were studied. 

C. Estimation of System Functions 

For each transduccr, the axial and lateral systern func- 
tions were estimated using one subject using the higher- 
order spectral mcthod and were subsequently used for the 
deconvolution for all data sets obtained using that trans- 
ducer. Both the axial and lateral pulses were estimated on 
the RF data corresponding to the dermis, after suitablc 
correction for the attenuation and diffraction effects. For 
the axial pulse, about 200 echo lines of 128 saniples each 
were used (Le.: 200 averages were used to compute t,he 
mean third ordcr curnulants). A similar number of wave- 
forms were used for determining thc latcral point spread 
function. Fig. 3 shows the estimated axial and lateral pro- 
files for transducer I. It can he seen that the estimated 
axial pulse and the DB14 wavelet in Fig. 1 are quite sim- 
ilar. Also, the DB6 wavclct has thc closest match to the 
lateral point spread function of all the Danbechics wavelet 
functions. 

D. Deconuolution Results 

Fig. 4 shows an example of am image before and after 
deconvolution ohtainetl using transducer I. It can he seen 

that the image after deconvolution is able to more clcarly 
show hypoechoic structurcs in the thigh; presumably hair 
follicles. It should he noted that the number of samples 
per echo lime is usually much larger than the number of 
echo lines; therefore, the data werc resized to maintain the 
same scale in the axial and lateral directions before dis- 
playing the images. This resizing tends to offset the reso- 
lution improvement in the inmges. In order to quantify the 
improvement in resolution due to the deconvolution, the 
-6 dB correlation lengths of the RF data corresponding 
to the irnagcs were computed before and after deconvolu- 
tion (before image resizing). Similar measures have been 
nsed previously by other rcsearchers [3],  171. It also should 
be pointcd out that the -6 dB correlation length is not 
the same as the axial and lateral resolutions mentioned in 
Table I. The resolution gain was defined as the ratio of the 
-6 dB corrclation lengths of the RF data before deconvo- 
lution to  that after deconvolution (before any resizing was 
done for display purposes). For this data set, the axial and 
lateral resolution gains were 1.88 and 3.65, respectively. 

Fig. 5 shows an image of the fingertip region obtained 
on a 31-year-old male subject using transducer I. After 
deconvolutio~i, the fingerprints on the surface appear more 
continuous rathcr than brokcn as in the original image. 
The axial and latcral resolution gains for this data set were 
2.35 and 4.92, respectively. 

Fig. 6 shows an irnagc of thc forearm skin of a 31-year- 
old male subject obtained using transducer 11. For trans- 
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Fig. 3.  Estimated axial and la?ersl system functions for transducer I. 

ducer 11: the original lateral resolution was poorer than 
that, of transdiiccr I due to its larger f-riumber. Therefore: 
the improvement in resolution is more clearly seen in this 
case. The axial and laterel resolution improvemeiits were 
5.4 and 14.8; respectively. 

Table 111 shows the results for all data sets studied in 
this work. The improvements in axial and lateral resolu- 
tion were better for transducer 11, which is expected as its 
original lateral resolution was the poorest to begin with. 
Transducer 111 had better axial and lateral resolution for 
the original iniages due to its higher center frequency and 
larger bandwidths; therefore, the improvement was smaller 
than those of the other two transdncers. The improvement 
in axial resolution also is proportional to the improvement 
in lateral resolution, indicating that the axial and lateral 
directions arc not truly uncorrelated. 

V. Drscussro~ AND CONCLUSIONS 

This paper presents a robust method for deconvolution 
of high-frequency ultrasound skin images using a comhina- 
tion of higher-order spectral methods and wavelet analysis. 
These methods also are applicable to ultrasonic images of 
other tissues. For the general deconvolution problem in 
which the system function also is unknown. a unique so- 
lution for both the system function h ( . )  and the tissue 

signal 2(7k) does not exist. For example, two trivial sohl- 
tioris that satisfy the deconvolution problem in the absence 
of noise are h(n) = 6 ( n ) ,  z(ii) = y(n,) and h(n) = y(n) ,  
z(n)  = 6 ( n ) .  Tlms, some assumptioils regarding the sys- 
tem function and/or the tissue signal needs t,u be in or- 
der to obtain a mcanirigful solution. One such assump- 
tion is that the system function h(n,) and tissue fmictioIi 
x(n) have different cepstral signatures and can be sepa- 
rated [2]. A furt,her assumption t,hat the system function 
is niinirntmi phase simplifies the procedure as the corn- 
plex cepstrum cam be computed from a knowledge of the 
real cepstruiii arid phase uiiwrappirig problems are avoided 
[5]: [21]. Bayesian dcconvolubion, wliicli uses a stochastic 
approach, is another method for image restoration. Coin- 
iiiorily this method is impleiiiented assuming a Gaussian 
modcl for the probability density fimction of tissite reflec- 
tivity [4]. In our work we assumed that the tissue signal 
x(n) was non-Gaussian, which was supported by our ear- 
lier results [lo]. Therefore, we used higher-order spectral 
nidiods to extract t.lie pulse. An advantage of this method 
is that the tissue signal and the pulse signal easily can be 
decoupled. Therefore, a piilse or lateral point spread func- 
tion estimated from one data set could be used for all 
subsequent data setsl making the procedure simple and 
efficient. This was demonstrated in this work: where only 
one pulse was used for all subjects arid meaningful results 
were obtained. 

Taxt [e] lids compared seven different, deconvolution 
methods that use cepstral computations and found thas 
first order cepstral methods might have an advantage over 
higher order methods for conventional 1-10 MilHz ultra- 
sound. However, even in that work? data from liver and 
gastric antrum showed good results with higher order 
methods, prcsuniably because the echo signals were 11011.- 

Ganssian. In our earlier work we showed that envclopt: 
signals collected from the transducers used in this work 
from skiii tissues are non-Rayleigh; therefore, the carre.- 
spoilding RE sigrials are non-Gaussian. In particular we 
have used third-order methods, which require the addi-- 
tional assumption of nonzero third-order cumulants. Phys-- 
ical reaoris for such assumptions were given by Abeyratne 
et  al. [22]. The tissue is modeled as a collection of dif-~ 
fuse, mixed, and resolvable periodic scatt,erers, and nom 
Gaussianity arises due to the mixed and periodic resolv-- 
able components. Third-order methods were used because 
they are computationally simpler than the fourth or even 
higher-order methods. 

To the best of our knowledge, a11 previous deconvolution 
methods i n  ultrasotind have used a siniple inverse Wiener 
filtering after pulse estimation. In the present work, we 
have used a wavelet-based approach to the inverse Wiener 
filtering to  estimate the tissue signals. Our experience thus 
far is that. tlie wavelet-Wiener method is better than the 
simple Wiener method. A useful side conirrient is that, 
wavelet-based methods are more natural in pulse-echo ul- 
trasound analysis in general as a specific wav-clet coda 
be easily chosen to very efficiently represent the signal. 
Thereforc: tasks such as filtering, denoising, and compres- 
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Fig. 4. (a) Image of the skin at  the thigh region OS a 30-year-old male subject obtained using transducer I before deconvolution. The field 
of view is 5 m m  wide by 4.5 mrn. (b) The same image altcr axial and lateral deconvolution. The hypoechoic structures (arrow marks) are 
possibly hair follicles, and they are better displayed in the dcconvolved image than in thc original image. Panels (c)  and (d) show the u i a l  
and lat,eral correlation functions of the images, respectively. The correlation functions after deconvolution have sniallcr main lobe widths 
than those of the original image. 
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Fig. 5. (a) Image of a fingertip skin of a 31-year-old male subject obtained using transducer 1 before deconvolution. The field of view is 
5 mm widc by 4.5 mm deep. (b) Tho same imagr after axial irnd lateral deronvolution The fingerprints 011 the surface appear better in thc 
deconvolvcd image i n  that they appear more continuous. Panels (c) arid (d) show the axial and lateral correlation Sunctiuris of the images, 
respectively. The correlation functions after deconvolution haw smaller main lobe widths than those of the original image. 
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(a) Original image (b) Deconvohred image 
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Fig. 6. (a) Image of the skin a t  the forearm region of a 31-year-old male subject obtained using transducer 11 before deconvolution. The field 
of view is 6 mm wide by 4.5 mm. (h) The same image after axial and lateral dccorrvolotion. The iniprovement in resolution in the deconvolved 
image can be seen. Panels (c) and (d) show the axial and lateral correlation functions of the images, respectively. The corrclation functioni 
after deconvolution have smaller main lobe widths than those of the original image. 

TABLE 111 
RESOLUTION GAINS OBTAISED DUE TO DECONVOLU!ION.~ 

Number of Axial resolution gain Lat,eral resolution gain 
Transducer data sets (mean + SD) (mean i SD) 

1 (F'I50) 22 1.99 i 0.34 

111 II'I3005) 7 1.21 f 0 39 
I1 (F'I75)' 2 4.1. 5.4 

4.01 i 0 . 8 ~  
11.1, 14.8 

2.76 i 0.51 

'The resuits are bucd on -6 dB correlatioii lengths in the axial and lateral directions of the RF signal 
'Far transducer 11, the actual values are shown. 

sion could be very efficiently accomplishcd using wavelet 
representations. 

In this work the axial and lateral deconvolution meth- 
ods were decoupled for the sake of simplicity. For a given 
tissue, the finest resolution possible in the axial dircction 
depends on the sampling frequency. The resolution im- 
provement in the c a e  of transducer I1 was higher even 
in t,he axial direction compared to those of the other two 
transducers, even though the same sampling rate was used 
for all transducers. This is most likely because the axial 
and lateral signals are not fully decoupled and each A- 
scan is not strictly a representation of one line of data. 
Therefore, in future studies, full 2-D deconvolution meth- 
od$ using wavelet-Wiener methods might be more useful. 

The deconvolution model in (1) is a simplified one in 
tha,t other effects such as phase aberrations have riot been 

accounted for. In the field of astronomy in which dcconvo- 
lution methods have been used successfully, phase aberra- 
tion correction (using adaptive optics) is often done before 
deconvolution. Such a procedure is not currently possible 
with high-frequency ultrasound as phased-array transduc- 
ers are not available yet: but, with the development of such 
systems in the future [23] .  it may be possible to combine 
phase-aberration correction and deconvolution to signifi- 
cantly improve the quality of high-frequency ultrasounii 
images. 
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